《BioRxiv,2月27日,Spike protein binding prediction with neutralizing antibodies of SARS-CoV-2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-02-28
  • Spike protein binding prediction with neutralizing antibodies of SARS-CoV-2

    Tamina Park, Sang-Yeop Lee, Seil Kim, Mi Jeong Kim, Hong Gi Kim, Sangmi Jun, Seung Il Kim, Bum Tae Kim, Edmond Changkyun Park, Daeui Park

    doi: https://doi.org/10.1101/2020.02.22.951178

    Abstract

    Coronavirus disease 2019 (COVID-19) is a new emerging human infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, also previously known as 2019-nCoV), originated in Wuhan seafood and animal market, China. Since December 2019, more than 69,000 cases of COVID-19 have been confirmed in China and quickly spreads to other counties. Currently, researchers put their best efforts to identify effective drugs for COVID-19. The neutralizing antibody, which binds to viral capsid in a manner that inhibits cellular entry of virus and uncoating of the genome, is the specific defense against viral invaders. In this study, we investigate to identify neutralizing antibodies that can bind to SARS-CoV-2 Sipke (S) protein and interfere with the interaction between viral S protein and a host receptor by bioinformatic methods.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.02.22.951178v1
相关报告
  • 《bioRxiv,6月6日,Synthetic Antibodies neutralize SARS-CoV-2 infection of mammalian cells》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-09
    • Synthetic Antibodies neutralize SARS-CoV-2 infection of mammalian cells Shane Miersch, Mart Ustav, Zhijie Li, James B. Case, Safder Ganaie, Giulia Matusali, Francesca Colavita, Daniele Lapa, Maria R. Capobianchi, View ORCID ProfileGuiseppe Novelli, Jang B. Gupta, Suresh Jain, Pier Paolo Pandolfi, Michael S. Diamond, Gaya Amarasinghe, James M. Rini, Sachdev S. Sidhu doi: https://doi.org/10.1101/2020.06.05.137349 Abstract Coronaviruses (CoV) are a large family of enveloped, RNA viruses that circulate in mammals and birds but have crossed the species barrier to infect humans seven times. Of these, three pathogenic strains have caused zoonotic infections in humans that result in severe respiratory syndromes including the Middle East Respiratory Syndrome (MERS-CoV), severe acute respiratory syndrome (SARS-CoV), and now SARS-CoV-2 coronaviruses, the latter of which is the cause of the ongoing pandemic of coronavirus disease 2019 (COVID-19). Here, we describe a panel of synthetic monoclonal antibodies, built on a human framework, that bind SARS-CoV-2 spike protein, compete for binding with ACE2, and potently inhibit infection by SARS-CoV-2. These antibodies were found to have a range of neutralization potencies against live virus infection in Vero E6 cells, potently inhibiting authentic SARS-CoV-2 virus at sub-nanomolar concentrations. These antibodies represent strong immunotherapeutic candidates for treatment of COVID-19. Competing Interest Statement S.S, P.P.P and S.J, are cofounders of Virna Therapeutics. The company is developing novel therapies for COVID-19 and other viruses.
  • 《bioRxiv,4月3日,SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-04-05
    • SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation Qiang Zhang, Huajun Zhang, Kun Huang, Yong Yang, Xianfeng Hui, Jindong Gao, Xinglin He, Chengfei Li, Wenxiao Gong, Yufei Zhang, Cheng Peng, Xiaoxiao Gao, Huanchun Chen, Zhong Zou, Zhengli Shi, Meilin Jin doi: https://doi.org/10.1101/2020.04.01.021196 Abstract Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, and rapidly spread worldwide. Previous studies suggested cat could be a potential susceptible animal of SARS-CoV-2. Here, we investigated the infection of SARS-CoV-2 in cats by detecting specific serum antibodies. A cohort of serum samples were collected from cats in Wuhan, including 102 sampled after COVID-19 outbreak, and 39 prior to the outbreak. 15 of 102 (14.7%) cat sera collected after the outbreak were positive for the receptor binding domain (RBD) of SARS-CoV-2 by indirect enzyme linked immunosorbent assay (ELISA). Among the positive samples, 11 had SARS-CoV-2 neutralizing antibodies with a titer ranging from 1/20 to 1/1080. No serological cross-reactivity was detected between the SARS-CoV-2 and type I or II feline infectious peritonitis virus (FIPV). Our data demonstrates that SARS-CoV-2 has infected cat population in Wuhan during the outbreak. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.