《用固态纳米孔传感器对生理透明质酸钠的分布进行无标签分析。》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-03-16
  • 透明质酸(或透明质酸,HA)是一种无处不在的分子,在体内许多生理功能中起着关键作用,包括组织水化、炎症和关节润滑。生物体液中HA的丰度和大小分布都被认为是各种病理和疾病进展的可靠指标。然而,这种分析仍然具有挑战性,因为传统的方法不够敏感,动态范围有限,而且/或只是半定量。在此,我们演示了用固态纳米孔传感器对HA进行无标签检测和分子量鉴别。我们首先使用合成的HA聚合物来验证测量方法,然后利用这个平台来确定从滑膜液中直接提取的10 ng的HA的大小分布,这是一种骨关节炎的模型。我们的研究结果建立了一种定量的方法来评估一种重要的分子生物标志物,它在当前的艺术状态中填补了空白。

    ——文章发布于2018年3月12日

相关报告
  • 《将子3 nm等离子体隙集成到固态纳米孔中》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-12-27
    • 等离子体纳米孔结合了纳米孔和表面等离子体共振的优点,将有限的电磁场引入到固态纳米孔中。金属纳米天线之间的超音波纳米带可以产生极增强的局部电磁场,这是单分子光学传感和操作所必需的。然而,制造方面的挑战阻碍了这种纳米技术集成到纳米孔中。本文报道了一种将等离子体天线与超音波纳米粒子结合成固态纳米孔的自顶向下的方法。采用两步电子束光刻技术,证明了纳米级纳米级的可再生制备技术。随后,纳米孔在纳米孔中心的20nm处被钻穿,用透射电子显微镜进行聚焦电子束的雕刻,以最小的缺口为代价进行微小的缝隙扩张。利用这种方法,在固态纳米孔上可以很容易地制备出3nm纳米颗粒。通过对DNA易位进行单分子检测,可以发现这些等离子体纳米孔的功能。这些集成的设备可以在纳米孔的入口处产生密集的电磁场,并有望在纳米孔的单分子捕获和光学传感中找到应用。 ——文章发布于2017年12月18日
  • 《半导体纳米传感器测量膜电位。》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-01-28
    • 美国的研究人员已经开发出了纳米传感器,可以直接插入到细胞的脂膜中,并用于测量膜电位。这些设备是基于无机半导体纳米粒子的,可能会记录多个神经元的动作电位,以及纳米尺度上的电信号——例如,在一个突触上。 由于近年来无机胶体合成技术的进步,研究人员现在可以制造出能够精确控制尺寸、形状和成分的功能性半导体纳米粒子。这种纳米颗粒可用于各种应用,如光电子、生物成像、传感、催化和能量采集。 这些纳米材料还可以与生物细胞结合,制造出高度复杂的混合纳米材料,其性能优于纯生物材料。然而,直到现在,将这些粒子植入细胞膜已经证明是困难的。这是因为它们通常太大,表面的特性会导致细胞膜上的非特异性结合。更重要的是,将纳米粒子插入膜层中,因为它们的表面需要被功能化,从而使粒子被插入到正确的方向。 将膜蛋白样的特性注入纳米颗粒。 加州大学洛杉矶分校的Shimon Weiss领导的一个研究小组说,将膜蛋白样的物质注入纳米颗粒可能会使他们更容易瞄准并插入脂质双层膜。该方法可用于制备具有实用功能的薄膜-嵌入式混合纳米材料。研究人员现在已经开发出一种使用杆状纳米粒子的方法,并且还表明粒子可以首次用来测量膜电位。 Weiss和他的同事们使用了一种肽涂层技术来确保纳米棒在正确的方向上插入到膜中——也就是垂直于膜表面。“这是很重要的,因为与膜表面平行插入的棒不能检测膜上的膜电位,”Weiss解释道。“涂层技术本身涉及到亲水分子的两亲性多肽的吸附,与尖端的亲水序列片段相结合,以及与纳米棒的两侧对齐的疏水序列段。” 纳米棒可以感知膜电位。 研究人员报告了他们在2018年的科学研究进展;4:e1601453,通过用透射电子显微镜成像,证实纳米棒在正确的方向插入细胞膜。 这些纳米棒一旦插入,就能感受到膜的潜力,这要归功于量子限制的单粒子灵敏度。研究人员说:“随着进一步的改进,这些纳米传感器有可能被用于在长时间的大视场中同时记录多个神经元的动作电位,并在纳米尺度上记录电信号,例如穿过一个突触。” 他们补充说,他们现在将改善肽涂层和膜插入过程。 ——文章发布于2018年1月12日