《南京土壤所在根际土壤线虫-解磷微生物网络结构和功能研究中取得进展---中国科学院南京土壤研究所》

  • 来源专题:长江流域资源与环境知识资源中心 | 领域情报网
  • 编译者: changjiang
  • 发布时间:2017-09-14
  • 时间: 2017-07-04 编辑: 打印 大 中 小 关闭.

      资源竞争和生物间捕食作用是生物群落物种组成和多样性演变的关键驱动力。已有的研究较多地揭示了土壤微生物之间的资源竞争和生态位分化,但对生物捕食影响微生物多样性和群落结构演变的作用机制仍缺乏研究,尤其缺乏在野外开放环境下的长期试验研究。线虫是土壤中最丰富的无脊椎动物之一,线虫捕食作用影响了微生物的数量和功能。在农田土壤中,不同培肥措施影响了土壤结构和孔隙、有机质和养分含量、水分和酸碱度的变化,必然影响线虫对微生物的捕食作用以及微生物的逃避作用,从而影响微生物的分布及其养分转化功能,然而在特殊的土壤微域中(根际- 团聚体),不同培肥措施如何通过影响土壤物理和化学性质改变线虫- 解磷微生物的网络结构和磷素转化功能仍不清楚。

      南京土壤研究所孙波课题组针对中亚热带典型的贫瘠旱地红壤,基于长期有机培肥(猪粪)试验,结合高通量测序技术,发现长期培肥后根际微生物总量和解有机磷微生物数量显著增加,食细菌线虫通过对解磷微生物的捕食作用促进了碱性磷酸酶的活性,最终提高了红壤磷素的有效供应。其关键机制是食细菌线虫的优势属(原杆属Protorhabditis )通过对生物网络中的共有关键微生物(中慢生型根瘤菌属,Mesorhizobium )的捕食作用,增强了红壤有机磷的生物分解。利用结构等式模型分析表明,根际土壤大团聚体中微环境(有机质、全氮、pH )比中小团聚体更为适宜生物网络的形成,食细菌线虫的捕食作用不仅增加解磷微生物的丰度,也显著改变了解磷微生物的群落结构,导致线虫捕食对碱性磷酸酶活性的促进作用更强。为了验证线虫捕食的促磷机制,在红壤大、中、小团聚体中添加了相似丰度的原杆属线虫,证实了线虫捕食显著提高了解磷微生物的丰度和解磷功能。该研究结果在土壤微域尺度上,阐明了土壤线虫与微生物的协同分布特征对根际土壤磷素转化的生物驱动机制,为建立红壤生物培肥措施提供了的理论依据。该成果在ISME Journal 上发表(Jiang et al., 2017, doi:10.1038 /ismej.2017.120 )。

    旱地红壤大团聚体中线虫捕食对根际解磷微生物数量和功能的影响

    (1. 线虫优势种- 原杆属Protorhabditis , 4. 网络枢纽- 中慢生型根瘤菌属Mesorhizobium OTU1352 )

相关报告
  • 《南京土壤所在土壤自然微生物组降解机制方面取得进展》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-09-10
    • 土壤自然微生物组具有高度的结构复杂性、代谢多样性和抗环境干扰性,因而它具有迅速调节自身结构来响应和适应复杂环境变化的能力,从而实现单一菌株难以完成或无法完成的环境功能。土壤自然微生物组是环境生物修复的重要资源,它能够直接参与持久性有机污染物的降解(如多环芳烃、多氯联苯等)。因此,如何挖掘土壤自然微生物组的环境修复功能,是当前生物修复领域的研究前沿和热点。 中国科学院南京土壤研究所研究员滕应课题组最新发表在Science of the Total Environment期刊上的论文提出了基于土壤自然微生物群落构建复合微生物组的生物修复策略,可用于高分子量多环芳烃污染土壤的生物修复。该研究将环境功能强(芘降解能力)的水稻土自然微生物群落引入到功能较弱的红壤中,使不同微生物成员相互接触,通过直接或间接生物信息交流,构建出新的相互作用关系网络(包括微生物之间、微生物与环境之间),从而形成稳态的土壤自然复合微生物组,并显著促进土壤中多环芳烃芘的生物降解。研究结果为多环芳烃污染土壤微生物修复提供了新思路、新方法。 吴晓燕 摘编自http://www.cas.cn/syky/201807/t20180705_4657249.shtml 原文标题:南京土壤所在多环芳烃污染土壤自然复合微生物组降解机制方面取得进展
  • 《南京土壤所在病毒调控土壤有机碳积累机制研究中取得进展》

    • 来源专题:耕地与绿色发展
    • 编译者:张毅
    • 发布时间:2025-06-04
    • 微生物是陆地碳循环的主要驱动者,控制着土壤有机质中的碳储存与向大气释放的CO?之间的平衡。土壤病毒作为土壤碳循环的重要组成部分,通过侵染作用显著影响微生物群落动态和功能。然而,病毒如何调控农田土壤有机碳积累的机制尚不清楚。 中国科学院南京土壤研究所张佳宝院士团队通过华北平原长期秸秆还田定位试验发现,病毒通过裂解与溶原两种生活方式动态调控碳循环。在秸秆还田土壤中(高碳条件),93%的病毒处于裂解状态,通过分解宿主细菌释放大量有机质,加速微生物周转,促进矿物结合态有机碳和微生物残体碳的形成。相反,在秸秆移除土壤中(低碳条件),21%的病毒选择溶原状态,携带多糖水解酶等辅助代谢基因,帮助宿主降解难分解有机物,提升碳利用效率。病毒携带的辅助代谢基因可定向优化宿主代谢路径:低碳条件下,病毒的辅助代谢基因主要参与碳降解,如糖苷水解酶(GHs)基因;而高碳条件下,病毒则富集碳固定相关基因(如rbcL、tktA),通过卡尔文循环增强宿主固碳能力。研究揭示了病毒对农田土壤有机碳调控的“双重机制”。 该研究表明,秸秆还田配合氮肥施用可促进裂解病毒主导的“病毒分流”效应,通过释放宿主养分和塑造微生物残体,显著提升土壤有机碳含量。研究成果为精准调控农田土壤固碳技术路径、制定科学施肥与秸秆还田方案提供了理论依据。相关成果近日发表在Advanced Science上,此项研究得到国家重点研发计划、国家小麦产业体系等项目支持。