《南京土壤所在病毒调控土壤有机碳积累机制研究中取得进展》

  • 来源专题:耕地与绿色发展
  • 编译者: 张毅
  • 发布时间:2025-06-04
  • 微生物是陆地碳循环的主要驱动者,控制着土壤有机质中的碳储存与向大气释放的CO?之间的平衡。土壤病毒作为土壤碳循环的重要组成部分,通过侵染作用显著影响微生物群落动态和功能。然而,病毒如何调控农田土壤有机碳积累的机制尚不清楚。

    中国科学院南京土壤研究所张佳宝院士团队通过华北平原长期秸秆还田定位试验发现,病毒通过裂解与溶原两种生活方式动态调控碳循环。在秸秆还田土壤中(高碳条件),93%的病毒处于裂解状态,通过分解宿主细菌释放大量有机质,加速微生物周转,促进矿物结合态有机碳和微生物残体碳的形成。相反,在秸秆移除土壤中(低碳条件),21%的病毒选择溶原状态,携带多糖水解酶等辅助代谢基因,帮助宿主降解难分解有机物,提升碳利用效率。病毒携带的辅助代谢基因可定向优化宿主代谢路径:低碳条件下,病毒的辅助代谢基因主要参与碳降解,如糖苷水解酶(GHs)基因;而高碳条件下,病毒则富集碳固定相关基因(如rbcL、tktA),通过卡尔文循环增强宿主固碳能力。研究揭示了病毒对农田土壤有机碳调控的“双重机制”。

    该研究表明,秸秆还田配合氮肥施用可促进裂解病毒主导的“病毒分流”效应,通过释放宿主养分和塑造微生物残体,显著提升土壤有机碳含量。研究成果为精准调控农田土壤固碳技术路径、制定科学施肥与秸秆还田方案提供了理论依据。相关成果近日发表在Advanced Science上,此项研究得到国家重点研发计划、国家小麦产业体系等项目支持。

  • 原文来源:http://www.issas.cas.cn/xwzx/kjjz/202505/t20250526_7791549.html
相关报告
  • 《南京土壤所在细菌-病毒相互作用调控土壤有机碳方面取得进展》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-11-29
    •     氧化还原诱导的铁(Fe)转化是厌氧水稻土中至关重要的生物地球化学过程。铁保护对水稻土有机碳积累具有重要作用。同时,铁保护也可以通过调控铁还原相关微生物群落促进土壤有机碳的分解。在生物炭添加条件下,铁氧化物如何影响水稻土有机碳固存尚未明晰。此外,生物炭添加会刺激土壤中微生物的生长繁殖,病毒可通过直接裂解细菌或者调控养分供应间接影响细菌群落。然而,生物炭添加条件下细菌-病毒相互作用如何调控水稻土有机碳动态并不明确,细菌-病毒相关作用与铁保护在土壤有机碳固存方面的相对贡献有待进一步揭示。     针对以上科学问题,南京土壤研究所张佳宝院士团队通过盆栽实验,在团聚体水平研究了添加不同比例生物炭条件下水稻土有机碳固存机制。研究结果表明:生物炭施用提高了土壤有机碳含量,并在各级团聚体水平提高了酚氧化酶活性,降低了大团聚体中β-葡萄糖苷酶活性。铁氧化物和微生物残体与土壤有机碳呈显著负相关。细菌群落与病毒群落显著相关。其中,核心生态集群和细菌-病毒网络中的关键物种与有机碳呈显著负相关。然而,铁氧化物与核心生态集群呈显著正相关。与传统观点不同的是,该研究发现土壤有机碳的增加主要不是由铁氧化物驱动的,而是受到细菌-病毒相互作用和关键类群的强烈影响。以上证据表明,生物炭调控了稻田土壤中微生物介导的有机碳积累,并明确了病毒在调节细菌群落及土壤有机碳中的作用。在未来进行土壤有机碳预测时,土壤细菌-病毒的相互作用不容忽视。     以上研究成果发表在Environmental Science & Technology上。该成果得到了国家自然科学基金、中国科学院战略性先导科技专项和国家重点研发计划项目的资助。
  • 《南京土壤所在线虫-微生物互作影响不同团聚中有机碳库转化机制研究中取得进展》

    • 来源专题:长江流域资源与环境知识资源中心 | 领域情报网
    • 编译者:changjiang
    • 发布时间:2018-02-01
    • 资源竞争和生物捕食作用是生物群落物种组成和多样性演变的关键驱动力。已有研究较多揭示了土壤微生物之间的资源竞争和生态位分化,但对生物捕食影响微生物多样性和群落结构演变的作用机制仍缺乏研究,尤其缺乏在野外开放环境下的相关长期试验研究。线虫是土壤中最丰富的无脊椎动物类群之一,线虫捕食作用影响了微生物的数量、群落结构和功能活性。在农田土壤中,不同的培肥措施会改变土壤结构和孔隙、有机质和养分含量,必然影响线虫对微生物捕食作用的强度与效应,从而影响微生物的分布及其养分转化功能,这是调控土壤生物功能、提高农田养分利用效率的基础。前期研究已经发现,旱地红壤在长期有机培肥后,土壤团聚体中线虫对微生物的捕食作用促进了非根际氮代谢(“ 正反馈” ,Environ Microbiol , 2014 ;Soil Biol Biochem , 2015 )和根际磷代谢(“ 正反馈” ,ISME J , 2017 ),抑制了非根际碳代谢(“ 负反馈” ,Soil Biol Biochem , 2013 )。因此,线虫—微生物交互作用有利于红壤团聚体中有机碳固持和NP 养分平衡供应。土壤有机碳库可分为活性、慢性和惰性有机碳库,土壤不同团聚体中(大团聚体>2000 m m 、中团聚体250 ~2000 m m 、小团聚体<250 m m )三种碳库的积累过程不同,目前对于不同培肥措施下线虫—微生物的互作关系及其对不同有机碳库容与周转速率的影响机制仍不清楚。 南京土壤研究所孙波课题组针对中亚热带典型的贫瘠旱地红壤,基于长期有机培肥(猪粪)试验,研究发现红壤土壤活性、慢性和惰性有机碳库容随有机肥用量增加而增加,但在相同施肥量下其库容随团聚体粒径增大而减小;三种有机碳库的周转速率变化趋势与库容的变化趋势相反。大团聚中食细菌线虫群落结构与小团聚体和微团聚体显著分异,其优势类群原杆属的丰度最高,导致不同粒级团聚体中微生物群落结构的差异。大团聚体中细菌与真菌比值(B/F )和革兰氏阳性菌与阴性菌比值(G - /G +) 均高于微团聚体,但微团聚体中B/F 和G - /G +与有机碳库容和周转速率的正相关更为显著。结构等式模型分析表明,在大团聚体和小团聚体中,食细菌线虫的捕食作用通过增加细菌与真菌比值(B/F )间接促进了土壤有机碳库容与周转速率。该研究结果在土壤微域尺度上,阐明了土壤食细菌线虫的捕食作用对根际红壤不同有机碳库容与周转速率的生物作用机制,为建立红壤生物培肥措施提供了的理论依据。