《高效薄晶硅太阳能电池的多层设计策略》

  • 来源专题:工业强基
  • 编译者: 张欣
  • 发布时间:2024-07-05
  • 太阳能在我们全球追求清洁能源和可持续发展的过程中已变得不可或缺。如今,大约95%的太阳能电池是使用晶体硅(c-Si)制造的。大多数商业设计采用厚度约为160–170μm的c-Si光活性层。然而,由于仅硅就占每块太阳能电池板成本的近一半,专家们相信下一代c-Si太阳能电池会薄得多。

    不幸的是,薄c-Si太阳能电池的转换效率仍然远落后于厚工业电池。这是因为薄c-Si电池的最佳设计策略只会最大化单个参数,如短路电流密度、开路电压或填充因子。目前的方法都不能同时改善这些参数,所有这些参数对于实现高效率都很重要。

    在这种背景下,中国杭州电子大学的一个研究团队制定了一项新策略,以显著提高薄c-Si太阳能电池的效率。他们的研究发表在《能源光子杂志》上,代表着硅太阳能电池技术领域的重大突破。

    所提出的策略优化了一些关键的光学和电学特性,该团队认为这些特性是厚c-Si太阳能电池和薄c-Si太阳能细胞转换效率差异的原因。利用商业软件程序,他们对各种薄电池设计进行了光学模拟。通过使用太阳能电池的进一步实验,研究人员得出了一种创新的制造方法,该方法比传统技术具有几个优势。

    该团队没有使用通常用于制造厚c-Si层的硅锭切割方法,而是采用了层转移方法。他们用氢氟酸在厚硅片上蚀刻小孔。该多孔层作为衬底生长20μm薄的单晶硅层,可以很容易地分离并转移到柔性不锈钢衬底上。

    为了增强薄硅层的光学和电学性能,研究人员使用等离子体增强化学气相沉积在两侧沉积了多个金属纳米膜——分别在面向太阳能电池正面和背面的侧面沉积了SiO2/SiNx/SiOx层和Al2O3/SiNx/SiOx膜,它们具有金字塔结构。

    前SiNx/SiOx层和后SiOx/SiNx层分别增加了硅层在更短和更长波长下的光吸收。这反过来又增强了短路电流密度,短路电流密度是衡量太阳能电池可以产生和收集的电荷载流子数量的指标。与用作参考的标准太阳能电池相比,电流密度从34.3增加到38.2mA/cm2。

    此外,SiO2和Al2O3层提供了高表面钝化,使所产生的电荷载流子的复合和损失最小化。这导致了更高的开路电压——衡量太阳能电池产生的最大电压。当使用所提出的设计时,它从参考电池中的632 mV提高到684 mV。因此,太阳能电池的填充系数从76.2%增加到80.8%,该系数是太阳能电池运行与理论最大效率接近程度的指标。

    正如模拟和实验所证实的那样,所提出的策略将转换效率从16.5%提高到21.1%,显著提高了4.6%(与参考电池相比,提高了约28%)。这使得薄c-Si太阳能电池的效率接近于工业上的厚太阳能电池,目前的效率为24%。

    JPE副主编、希腊帕特拉斯大学凝聚态物理学教授Leonidas Palilis评论道:“总的来说,这项研究的发现为实现使用更少硅的高性能薄晶体硅太阳能电池提供了一种新的方法——对于20μm的电池,大约是给定面板尺寸上160μm厚电池所需硅量的八分之一。”

    由于成本降低和太阳能电池板制造能力的扩大,这一进步可能有助于硅太阳能发电技术的更广泛、更具成本效益的采用。

  • 原文来源:https://techxplore.com/news/2023-09-multilayered-strategy-high-efficiency-thin-crystalline.html
相关报告
  • 《为a-si提供的多层氢化p型微晶硅窗口:在不透明基板H薄膜的太阳能电池》

    • 来源专题:可再生能源
    • 编译者:董璐
    • 发布时间:2016-04-16
    • 在衬底型非晶Si的性能?窗口:多层p型微晶(μc-)Si对不透明基板H薄膜的薄膜太阳能电池的影响进行了研究。结果在P/I界面的H2等离子体诱导的损伤(HPID)和光吸收层的近界面区域得到很好的解释。微晶硅:H是使用在富含H2气氛等离子体增强化学气相沉积。用高H2稀释比例,会引起相当大的HPID得到高微晶体积分数。电池效率增强了多层p型微晶硅:与H构成的具有低和高结晶体积分数膜相比,细胞单层微晶硅:H。在该多层p型微晶硅:H,低结晶性薄膜被放置在一个i硅上:以减少HPID的H层。目前工作表明HPID在P/I界面和光吸收层的附近的界面区域减少,并且,所述p型μc-Si的质量:H必须是一个显著考虑到实现高效率。
  • 《我国学者在高效稳定钙钛矿太阳能电池方面取得进展》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-06
    • 图 (A)器件结构示意图;(B、C)不同构型的电池老化后的ToF-SIMS深度剖面图。(D)无MoS2钝化和有MoS2钝化的钙钛矿的相变能量曲线。(E)钙钛矿、MoS2/钙钛矿、MoS2/钙钛矿/MoS2薄膜的TRPL衰减曲线。(F)在中国计量科学研究院认证的最优钙钛矿太阳能电池性能;(G)最优钙钛矿微型组件性能;(H)钙钛矿太阳能电池的高温运行稳定性。   在国家自然科学基金项目(批准号:52125206、52302320)等资助下,北京大学周欢萍教授与合作者在高效稳定钙钛矿太阳能电池方面取得进展。相关研究成果以“晶圆级单层硫化钼集成实现高效稳定钙钛矿太阳能电池(Wafer-scale monolayer MoS2 film integration for stable, efficient perovskite solar cells)”为题,于2025年1月10日在线发表于《科学》(Science),论文链接:https://www.science.org/doi/10.1126/science.ado2351。   金属卤化物钙钛矿以其优越的光电性能和低廉的成本成为最有前景的新一代光伏材料。尽管钙钛矿太阳能电池发展迅速,但同时实现高效和稳定仍是巨大挑战。卤化物钙钛矿由于其软晶格和相对较弱的键,在太阳能电池运行过程中容易降解。即使通过封装来隔离水分和氧气,钙钛矿在热、光照和电场下的不稳定性仍是其商业化应用亟需解决的关键问题。   周欢萍教授团队提出将晶圆级连续单层MoS2集成到钙钛矿层的上、下界面以形成稳定器件构型,从而显著增强钙钛矿太阳能电池的效率和稳定性。研究表明,晶圆级MoS2插层由于连续二维形态,从物理上最大程度地阻挡了钙钛矿离子向载流子传输层的迁移。而且,MoS2通过与钙钛矿强配位相互作用在化学上稳定了α相FAPbI3。MoS2插层还通过与钙钛矿形成Pb-S键化学钝化钙钛矿表面缺陷,并通过与钙钛矿I型能带排列阻挡少子复合,从而显著减少了载流子非辐射复合。此外,单层MoS2的原子级厚度克服了钝化质量和载流子传输之间难以协同的挑战,最大限度地提高了钙钛矿太阳能电池的开路电压(认证VOC=1.20 V)和填充因子(认证FF=84.3%)。包含MoS2/钙钛矿/MoS2结构的钙钛矿太阳能电池和组件分别实现了高达26.2%(认证稳态效率为25.9%)和22.8%的光电转换效率。此外,电池表现出卓越的湿热稳定性(在85℃和85%相对湿度下老化1200小时后保留初始效率的95%)、光照稳定性(在连续一个太阳照射下在开路状态下老化2000小时后保留初始效率的96.6%)和运行稳定性(在室温下连续一个太阳照射下在最大功率点跟踪2000小时后效率基本没有衰减,在85℃下连续一个太阳照射下在最大功率点跟踪1200小时后保留初始效率的96%)。   本研究通过界面工程将二维材料与软晶格光电材料结合起来,为提高钙钛矿基光电器件的性能提供了有效策略,并可以扩展到传感器、探测器等其他相关领域支撑高效稳定器件的构建。