《研究揭示转录因子通过相分离驱使神经元终末分化的新机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-01-10
  • Developmental Cell杂志在线发表了北京大学生命科学学院宋艳研究组题为“Mitotic implantation of the transcription factor Prospero via phase separation drives terminal neuronal differentiation”的研究论文。该文揭示了果蝇发育过程中,一个转录因子通过液-液相分离“植入”神经前体细胞有丝分裂期染色体,通过促进H3K9me3+异染色质凝聚确保神经元终末分化的新现象和新机制。

    当细胞进入有丝分裂期,由于染色质凝缩形成高度致密的染色体,绝大多数基因转录的关键调控元件(包括转录因子)会从染色体上脱离。在这项工作中,研究者通过免疫荧光染色和荧光显微动态成像意外地发现转录因子Prospero(Pros)可以形成小的聚集体 (foci)并滞留在果蝇神经前体细胞有丝分裂期染色体(图1)。Pros是在进化上高度保守的同源域 (homeobox)转录因子,与其在哺乳动物中的同源基因Prox1一同在促进细胞终末分化过程中起着关键性的作用。那么,Pros为什么可以保留在结构致密的染色体上?这一转录因子的染色体植入(mitotic implantation)现象又有什么样的生理学功能?通过精细的果蝇完整脑荧光动态成像、完整脑光漂白恢复、光液滴(optoDroplet)、体外相分离等多种技术手段,研究者观察到了令人惊讶的结果,即Pros蛋白是通过液-液相分离植入并保留在神经前体细胞H3K9me3标记的近着丝粒异染色质区(图1)。当神经前体细胞进入有丝分裂末期,保留在异染色质区的Pros蛋白招募并浓缩H3K9me3阅读器 HP1a成为相分离的凝聚体 (condensates),并促进其转变为低流动性的近凝胶状态,从而驱使新生成的神经元中H3K9me3+异染色质区域的凝缩和扩展(图2)。

    研究者进一步的DamID-seq、DNA FISH和动态成像实验结果表明,当神经前体细胞分裂产生两个神经元时,Pros从H3K9me3标记的异染色质区域解离下来,同时携带一部分HP1a到其关键目的基因(促进干细胞自我复制和推动细胞周期的重要基因),继而通过HP1a介导这些基因所在染色质区域发生局部凝缩,关闭这些基因的表达。另外,这些发生染色质局部凝缩的Pros目的基因位点可能通过HP1a介导的液滴融合与神经元中富含HP1a的异染色质区靠近,从而进一步促使这些关键基因的永久沉默,确保神经元的终末分化。

    值得一提的是,Prox1可能也采用“染色体植入驱使异染色质凝缩”这一策略来确保神经元的终末分化。另外,研究者发现Pros蛋白还可以形成聚集体保留在果蝇肠道前体细胞的分裂期染色体上。因此,这项研究所揭示的新现象和新机理可能代表了转录因子通过染色体植入驱使异染色质凝缩和细胞终末分化的普适规律。

    液-液相分离作为细胞内的一种自组织方式,为我们理解许多生物学现象提供了崭新的视角。然而,在生理条件下相分离是否真正参与调控重要的生物学过程还有待更确凿有力的证据 [7,8]。通过将Pros蛋白中介导相分离的关键位点进行点突变或删截,该工作的研究者在不影响内源表达量、入核能力及转录活性的基础上构建了特异缺失相分离能力的Pros突变体。相分离能力的特异缺失使得Pros无法保留在染色体上,相应也失去了其调节异染色质凝缩及促进神经元终末分化的功能。更为重要的是,通过与已知驱动相分离的内在无序区域(IDR)融合来恢复Pros的相分离能力,Pros的染色体滞留及其促进异染色质凝缩和神经元分化的能力可以被有效恢复。因此,通过特异的突变与回补实验和严谨的定量分析,这项研究首次建立了转录因子的液-液相变与生理条件下一系列重要生物学事件之间的因果关系,为相分离在动物发育过程中的重要生理学意义提控了强有力的证据。研究者推测其它滞留染色体的转录因子可能采用类似的液-液相分离的策略来实现其染色体滞留,并通过重塑染色质三维结构来调控细胞命运决定过程。

    综上所述,这项研究出乎意料的结果揭示了转录因子通过其生物物理特性的变化引起异染色质结构重塑,进而驱动细胞终末分化的新机制,为进一步探索细胞分化过程中异染色质的动态变化和调控机理提供了新视角和新思路。

  • 原文来源:http://news.bioon.com/article/6748866.html
相关报告
  • 《科学家揭示干细胞分化新机制》

    • 来源专题:再生医学与健康研发动态监测
    • 编译者:malili
    • 发布时间:2017-07-26
    • 国际学术期刊《Nature Communications》(自然-通讯)北京时间5月3日17时在线发表中国科学院广州生物医药与健康研究院裴端卿和舒晓东团队关于调控人胚胎干细胞向肝系细胞分化的机理研究。该成果为多能干细胞分化提供细胞生物学的机理,为解决干细胞在再生医学运用中打开一扇新门窗。与此同时,在统一体细胞重编程与干细胞分化这两个看似相反过程的机理研究中迈出一大步,促进细胞命运调控理论体系的建立。   历时多年的系统研究   如何大量获得具有特定功能的细胞如神经元、肝脏细胞及胰腺β细胞等是当前再生医学研究的重要课题之一,因为它们是细胞移植及体外人类器官构建的基础。科研人员结合体细胞重编程、定向分化或是转分化技术现在已经能够获得多种功能性细胞,但是,不同方法诱导效率不一,所获得的产物细胞的体内安全性、有效性不易评估。   早在2010年,裴端卿团队在研究中发现,细胞“逆转”过程是由间充质细胞状态转变到上皮细胞状态来驱动的,该过程被称为“MET”。随后,科研人员通过优化转化因子导入的顺序,发现在间充质转变到上皮细胞状态前还存在一个“上皮向间充质细胞”状态转换过程(该过程被称为“EMT”),并证明这样的多次转换有利于提高重编程效率。这一发现与中国传统阴阳太极理念较一致,科研人员进一步推论,间充质细胞状态与上皮细胞状态之间的 多次相互转换机理具有一定的普遍性,可能在其它类型的细胞命运转换过程中也有重要作用。为此,课题组对体细胞重编程的逆过程---多能干细胞的定向分化过程,进行了系统分析,重点评估EMT/MET过程在肝系分化过程中的作用。   肝脏细胞分化的关键点   成熟肝脏细胞是典型的上皮细胞,可由其同属上皮细胞的人胚胎干细胞通过体外定向分化而获得。在上述研究中,科研人员发现这两种上皮细胞之间的命运转换需要经过一个间充质状态的中间阶段。在胚胎干细胞分化为定型内胚层阶段发生了EMT过程,而随后进一步的肝系分化成熟过程伴随着MET过程。   科研人员运用单细胞分析、CRISPR/Cas9介导的基因修饰等技术,初步阐明了调控上述细胞命运转换的分子机制:Activin A诱导人胚胎干细胞分泌EMT的诱导信号TGF-β,后者激活EMT转录因子SNAI1,从而激活胚胎干细胞的肝系分化过程。   EMT/MET调控重编程及分化过程中细胞命运转换的发现,为获得特定的功能性细胞提供了一个理论性框架,有望通过对EMT/MET过程的分析和调控,高效、同步地获得特定功能的细胞,同时,降低分化程度不足导致的潜在安全隐患(如成瘤性等),从而满足再生医学研究对细胞的需求。   该研究得到了国家自然科学基金、国家重大科学研究计划、中国科学院战略性先导科技专项及广东省科技计划项目等经费资助。
  • 《解云礼/温文玉揭示神经干细胞增殖分化调控新机制》

    • 来源专题:战略生物资源
    • 编译者:郭文姣
    • 发布时间:2023-07-11
    •     2023年6月22日,复旦大学脑科学研究院解云礼研究员课题组与复旦大学生物医学研究院温文玉研究员课题组合作,在Cell Reports在线发表了Ccdc85c-Par3 condensates couple cell polarity with Notch to control neural progenitor proliferation的研究论文。该研究运用了生物化学等手段揭示了神经干细胞中极性蛋白通过相分离方式调控其增殖与分化,为深入理解大脑神经发生提供了新的见解。     作者首先利用生化手段鉴定出了一个新的与Par3相互作用的极性蛋白Ccdc85c,通过小鼠胚胎电转的方式验证了Ccdc85c在神经干细胞发育过程中的重要作用。进一步研究发现,Par3和Ccdc85c共定位于神经干细胞终足末端的同一位置,暗示Ccdc85c对于神经干细胞发育的调控作用可能与Par3结合相关。通过体外生物化学等手段,作者发现Ccdc85c的螺旋结构域与Par3的4N2结构域相结合,并且二者结合后有助于解开Par3的自抑制构象,从而形成蛋白质凝聚液滴。为了进一步研究Ccdc85c和Par3结合后调控神经干细胞发育的分子机制,结合FRET、FRAP等技术,作者发现解开自抑制构象后的Par3能够发生相分离从而募集更多的Numb蛋白,该蛋白是Notch信号通路的抑制因子,从而使得神经干细胞的Notch信号通路能够维持在特定水平保持增殖状态。     综上所述,该研究揭示了Ccdc85c这一极性蛋白在神经干细胞发育过程中的作用,并证实了Ccdc85c是与Par3极性蛋白的结合后通过相分离的方式募集更多的Numb,从而维持神经干细胞中的Notch信号通路水平,确保神经干细胞实现增殖与分化间的平衡。该研究解析了神经干细胞极性蛋白精确调控其增殖分化的分子机制,为深入了解大脑神经发生提供了新的见解。 编译来源:https://mp.weixin.qq.com/s/JOB8T9Cund_mr51sKMsfxg