《解云礼/温文玉揭示神经干细胞增殖分化调控新机制》

  • 来源专题:战略生物资源
  • 编译者: 郭文姣
  • 发布时间:2023-07-11
  •     2023年6月22日,复旦大学脑科学研究院解云礼研究员课题组与复旦大学生物医学研究院温文玉研究员课题组合作,在Cell Reports在线发表了Ccdc85c-Par3 condensates couple cell polarity with Notch to control neural progenitor proliferation的研究论文。该研究运用了生物化学等手段揭示了神经干细胞中极性蛋白通过相分离方式调控其增殖与分化,为深入理解大脑神经发生提供了新的见解。

        作者首先利用生化手段鉴定出了一个新的与Par3相互作用的极性蛋白Ccdc85c,通过小鼠胚胎电转的方式验证了Ccdc85c在神经干细胞发育过程中的重要作用。进一步研究发现,Par3和Ccdc85c共定位于神经干细胞终足末端的同一位置,暗示Ccdc85c对于神经干细胞发育的调控作用可能与Par3结合相关。通过体外生物化学等手段,作者发现Ccdc85c的螺旋结构域与Par3的4N2结构域相结合,并且二者结合后有助于解开Par3的自抑制构象,从而形成蛋白质凝聚液滴。为了进一步研究Ccdc85c和Par3结合后调控神经干细胞发育的分子机制,结合FRET、FRAP等技术,作者发现解开自抑制构象后的Par3能够发生相分离从而募集更多的Numb蛋白,该蛋白是Notch信号通路的抑制因子,从而使得神经干细胞的Notch信号通路能够维持在特定水平保持增殖状态。

        综上所述,该研究揭示了Ccdc85c这一极性蛋白在神经干细胞发育过程中的作用,并证实了Ccdc85c是与Par3极性蛋白的结合后通过相分离的方式募集更多的Numb,从而维持神经干细胞中的Notch信号通路水平,确保神经干细胞实现增殖与分化间的平衡。该研究解析了神经干细胞极性蛋白精确调控其增殖分化的分子机制,为深入了解大脑神经发生提供了新的见解。



    编译来源:https://mp.weixin.qq.com/s/JOB8T9Cund_mr51sKMsfxg

  • 原文来源:https://www.sciencedirect.com/science/article/pii/S2211124723006885?via%3Dihub
相关报告
  • 《水生所等揭示线粒体动态调控鱼类生殖干祖细胞命运决定的新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-10-31
    •   生殖细胞是多细胞动物体内唯一能够传递遗传信息的载体,是物种延续和品种扩繁的基础。对于有性生殖的动物而言,其生命诞生起始于精子与卵子的结合。无论精子或者卵子,均来源于胚胎期的原始生殖细胞(Primordial germ cells,PGCs)和幼体或成体性腺中的生殖干细胞(germline stem cells,GSCs),即生殖干祖细胞(germline stem and progenitor cells,GSPCs)。GSPCs的自我更新和分化是配子发生和性腺分化的关键,对这一机制开展创新性研究,不仅是发育生物学和生殖生物学的重要命题,而且是种业创新的重大需求。   线粒体被称为细胞的“动力工厂”,通过有氧呼吸和氧化磷酸化产生三磷酸腺苷(ATP),为细胞活动提供能量。线粒体是高度动态的细胞器,不断进行融合和分裂形成动态平衡,这对于线粒体稳态及其功能发挥至关重要。已有研究表明,线粒体稳态参与调控干细胞的命运维持和分化。然而,是否存在着GSPCs特异的线粒体动态调控机制,以及线粒体动态如何作用于GSPCs的命运决定,尚不清楚。   中国科学院水生生物研究所研究员孙永华团队长期从事鱼类生殖细胞发育相关研究,揭示了调控鱼类性腺发育和配子发生的多个新因子及其作用机制,并建立了同种或异种GSPC移植借腹生殖技术。近日,孙永华团队与华中农业大学教授陈振夏团队以斑马鱼为模型,通过生物信息学挖掘和实验生物学验证,发现了一个在生殖细胞中特异表达的线粒体融合调控因子Pld6。Pld6的缺失导致生殖细胞中线粒体动态失衡,线粒体形态及功能发生严重缺陷,进一步导致GSPCs命运的维持和分化受阻,最终形成缺乏生殖细胞的空巢精巢。这一研究揭示了生殖细胞特异的线粒体融合事件对于生殖细胞命运决定的重要作用,为鱼类生殖细胞发育的调控机制提供了新的见解。   研究人员对性腺分化阶段的精卵巢进行转录组分析,发现线粒体组装以及氧化磷酸化相关基因在卵巢中的转录水平显著高于精巢,提示GSPCs向卵子的分化需要更强的线粒体供能。进一步通过对精卵巢的单细胞转录组分析发现,调控线粒体融合的关键因子pld6不仅在卵巢组织高表达,而且特异表达于包括GSPCs在内的生殖细胞中(图1)。   研究人员建立pld6缺失的斑马鱼突变体模型,结果纯合突变体全部发育为不可育的雄性,组织学和细胞生物学研究显示,纯合突变体性腺中的生殖细胞完全丢失。对突变性腺的发育进行时序追踪和研究,研究人员发现pld6缺失的GSPCs既无法通过有丝分裂进行增殖,也无法通过减数分裂进行分化,从而在性腺发育早期即走向细胞凋亡途径。进一步研究揭示,突变体GSPCs中线粒体动态失衡,线粒体拷贝数以及ATP合成均显著减少,同时生殖细胞中特有的线粒体云(mitochondria-nuage)在突变体GSPCs中缺失,进而导致piRNA的合成受阻(图2)。因此,该研究发现了一个新的特异存在于生殖细胞中的线粒体融合调控因子,并揭示了其调控了鱼类GSPCs命运维持与分化的分子和细胞学机制。   相关研究成果近日以“一个生殖细胞特异的线粒体融合因子调控生殖干祖细胞的维持与分化”为题在线发表于Advanced Science。研究工作得到国家相关人才计划、国家自然科学基金创新研究群体、国家重点研发计划、中国科学院战略性先导科技专项等的资助。
  • 《科学家揭示干细胞分化新机制》

    • 来源专题:再生医学与健康研发动态监测
    • 编译者:malili
    • 发布时间:2017-07-26
    • 国际学术期刊《Nature Communications》(自然-通讯)北京时间5月3日17时在线发表中国科学院广州生物医药与健康研究院裴端卿和舒晓东团队关于调控人胚胎干细胞向肝系细胞分化的机理研究。该成果为多能干细胞分化提供细胞生物学的机理,为解决干细胞在再生医学运用中打开一扇新门窗。与此同时,在统一体细胞重编程与干细胞分化这两个看似相反过程的机理研究中迈出一大步,促进细胞命运调控理论体系的建立。   历时多年的系统研究   如何大量获得具有特定功能的细胞如神经元、肝脏细胞及胰腺β细胞等是当前再生医学研究的重要课题之一,因为它们是细胞移植及体外人类器官构建的基础。科研人员结合体细胞重编程、定向分化或是转分化技术现在已经能够获得多种功能性细胞,但是,不同方法诱导效率不一,所获得的产物细胞的体内安全性、有效性不易评估。   早在2010年,裴端卿团队在研究中发现,细胞“逆转”过程是由间充质细胞状态转变到上皮细胞状态来驱动的,该过程被称为“MET”。随后,科研人员通过优化转化因子导入的顺序,发现在间充质转变到上皮细胞状态前还存在一个“上皮向间充质细胞”状态转换过程(该过程被称为“EMT”),并证明这样的多次转换有利于提高重编程效率。这一发现与中国传统阴阳太极理念较一致,科研人员进一步推论,间充质细胞状态与上皮细胞状态之间的 多次相互转换机理具有一定的普遍性,可能在其它类型的细胞命运转换过程中也有重要作用。为此,课题组对体细胞重编程的逆过程---多能干细胞的定向分化过程,进行了系统分析,重点评估EMT/MET过程在肝系分化过程中的作用。   肝脏细胞分化的关键点   成熟肝脏细胞是典型的上皮细胞,可由其同属上皮细胞的人胚胎干细胞通过体外定向分化而获得。在上述研究中,科研人员发现这两种上皮细胞之间的命运转换需要经过一个间充质状态的中间阶段。在胚胎干细胞分化为定型内胚层阶段发生了EMT过程,而随后进一步的肝系分化成熟过程伴随着MET过程。   科研人员运用单细胞分析、CRISPR/Cas9介导的基因修饰等技术,初步阐明了调控上述细胞命运转换的分子机制:Activin A诱导人胚胎干细胞分泌EMT的诱导信号TGF-β,后者激活EMT转录因子SNAI1,从而激活胚胎干细胞的肝系分化过程。   EMT/MET调控重编程及分化过程中细胞命运转换的发现,为获得特定的功能性细胞提供了一个理论性框架,有望通过对EMT/MET过程的分析和调控,高效、同步地获得特定功能的细胞,同时,降低分化程度不足导致的潜在安全隐患(如成瘤性等),从而满足再生医学研究对细胞的需求。   该研究得到了国家自然科学基金、国家重大科学研究计划、中国科学院战略性先导科技专项及广东省科技计划项目等经费资助。