《中国科学院成都生物所在大麦中鉴定出两个淀粉合酶IIa自然变异体》

  • 来源专题:转基因生物新品种培育
  • 编译者: 王晶静
  • 发布时间:2021-03-04
  • 淀粉是麦谷类作物籽粒中含量较高的组分,对作物的产量、营养品质、健康价值和加工利用有重要影响。淀粉合酶IIa(starch synthase IIa,SSIIa)是作物淀粉合成中的关键酶,缺失或不足会造成麦谷类作物中支链淀粉链长分布改变、直链淀粉和膳食纤维含量增加、总淀粉含量和产量下降。关于水稻、玉米等作物中重要的SSIIa自然变异体研究已有报道,但目前尚未见不同功能的大麦SSIIa变异体研究。青稞(裸大麦)是我国青藏高原地区重要的口粮,在发掘青稞中淀粉合酶IIa变异体并研究其功能,对青稞和大麦的品质改良、加工利用及产业增值增效有重要意义。

    中国科学院成都生物研究所作物分子育种项目组通过电泳分离青稞淀粉颗粒结合蛋白,发现两个SSIIa自然变异体,结合质谱分析与蛋白免疫印迹对其进行“身份”确认,即SSIIaL和SSIIaH。通过编码基因序列差异分析,发现由于存在33bp的插入/缺失而产生了特异变异体,根据此序列差异开发出能够快速准确鉴定两种基因型的特异分子标记。通过重组自交系群体和自然群体,研究SSIIaL和SSIIaH对大麦籽粒的淀粉品质、其他籽粒组分和籽粒性状的影响,发现它们与籽粒硬度关系密切。研究SSIIaL和SSIIaH在野生大麦、澳大利亚栽培大麦、青稞农家品种、青稞育成品种中的分布,发现两种变异体在野生大麦中分布较为一致(14 SSIIaL/16 SSIIaH),澳大利亚栽培大麦中SSIIaH占绝对优势(5 SSIIaL/19 SSIIaH), 青稞中SSIIaL占比较高,青稞育成品种和农家品种SSIIaL/SSIIaH分别为46/28、41/57。SSIIaL和SSIIaH在不同群体中的分布差异与大麦终端利用及育种选择一致,澳大利亚栽培大麦主要用于啤酒酿造和饲料,籽粒硬度小、耗能少,SSIIaH基因型是更有利的选择;我国藏区的育种技术相对滞后,食用作为首要目标,因籽粒的高硬度指数与籽粒的色泽亮、营养品质好及抗性强相关联,籽粒硬度高的材料成为育种者的偏爱(SSIIaL基因型)。该研究为青稞和大麦品质定向育种选择提供了分子技术和理论依据。

    相关研究成果以Effects of Two Starch Synthase IIa Isoforms on Grain Components and Other Grain Traits in Barley为题,发表在Journal of Agricultural and Food Chemistry上。成都生物所副研究员潘志芬为论文第一作者和通讯作者。研究工作得到第二次青藏高原综合科学考察研究和省部共建青稞与牦牛重点实验室项目的资助。

  • 原文来源:http://www.cas.cn/syky/202101/t20210129_4776447.shtml
相关报告
  • 《中国科学院海洋研究所在微藻生物能源研究中取得产氢耦合产油的新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-06-10
    • 近日,中国科学院海洋研究所实验海洋生物学重点实验室刘建国团队在微藻生物能源研究中取得产氢耦合产油的新进展,相关成果发表在学术期刊Journal of Cleaner Production上。 微藻中的绿藻因具有光合作用效率高、生长周期短、高产生物能源与二氧化碳减排相耦合等特点,被认为是生产可再生能源的理想生物资源。以往绿藻产能的研究重点关注于光合产氢和生物柴油两个不同侧面的单独研究,一方面,绿藻光合产氢和油脂积累的诱导模式不同,前者为硫限制而后者则为氮限制;另一方面,产氢与产油在需求能量物质NADPH上存在竞争,传统上认为二者之间存在相互竞争关系,此消彼长难以兼顾,因而鲜见同一藻株协同产氢与油脂积累的报道。 海洋所藻类生物技术团队筛选出一株原壳小球藻(Chlorella protothecoides),可在氮限制条件下产氢,其产氢量与传统缺硫诱导下的经典模式藻株莱茵衣藻相当,在密闭隔氧+氮限制可诱导原壳小球藻同步光合产氢和油脂积累,其机制为:(1)氮限制使光合暗反应关键酶Rubisco降解,造成光合光反应电子和能量(NADPH)的积累,进而诱导活性氧产生;(2)在此状态下,细胞呼吸耗氧大于光合放氧,在密闭条件下产生厌氧环境,诱导氢酶活化,光合作用光反应过剩电子大量流向氢酶,实现高效光合产氢;(3)厌氧发生后,缺氧抑制呼吸电子传递,反馈抑制TCA循环,造成脂肪酸合成底物乙酰辅酶A积累。细胞中乙酰辅酶A和NADPH的积累为油脂合成提供了底物和能量,同时活性氧的大量产生可诱导油脂合成相关酶的高表达,进而有利于油脂的积累。因此原壳小球藻可在高效光合产氢的同时实现油脂大量积累。 该研究同时兼顾光合产氢和油脂积累,有利于推动从单一产能向协同调控多个产能过程的转变,为降低微藻生物能源生产成本、发掘微藻开发应用潜能、提高整体生产效率提供了新思路和方法。 相关成果发表在中国科学院一区Top期刊Journal of Cleaner Production上,张立涛副研究员为论文的第一作者,刘建国研究员为通讯作者,李凌副研究员参与了相关工作。研究得到了国家自然科学基金等项目的资助。   论文链接: Zhang Litao, Li Ling, Liu Jianguo (2022) Enhanced biohydrogen and lipid coproduction in Chlorella protothecoides under nitrogen-limiting conditions in a closed system. Journal of Cleaner Production, 359: 132169. https://www.sciencedirect.com/science/article/abs/pii/S0959652622017759
  • 《中国科学院过程所:魔法粉末“聚复盾”助力军民融合》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-01
    • 你在中国科学院工作这么久了,都为国家做了什么贡献啊?” 中国科学院过程工程所研究员李国良的父亲是一位退伍军人,父亲第一次这么问他时,他还不知如何回答。直到最近,他似乎有了一些答案。 在不久前落幕的第四届军民融合发展高技术装备成果展上,李国良研究团队为山东格物新材料科技有限公司(“山东格物”)研发的一种“魔法粉末”——“聚复盾”吸睛无数。作为一种智能化的纳米涂层材料添加剂,它在金属涂层破损后能进行自我修复,继续为飞机、轮船等金属表面提供腐蚀防护功能。 截至展览落幕,“聚复盾”与多家企业签约——标志着千呼万唤的自修复材料正式实现商品化,走进国民经济主战场。 就像一种“活着”的材料 伤口会慢慢愈合——这是生物得天独厚的自我修复能力。如果人工合成的防护涂层材料也有这样的本事,那将免去多少麻烦?这个看似天马行空的想法,是国际材料学界探索多年,多方角逐的前沿性课题。 “2011年到2014年期间,我在德国马普胶体与界面所做博士后,接触到了自修复纳米材料科学前沿思想。”李国良对《中国科学报》记者说,多年来,这个领域的基础学术论文发表了很多篇,但可以工业化、商业化的可修复材料,仍是很多科学家尚未实现的梦想。 2015年,李国良经由“相关人才计划”加入中国科学院过程所,他决定抛开前人思路,以自己的方式重新设计实验路线。此前十多年的纳米高分子材料研究经验积累,给了他新的灵感。 他设计了一种新的制备技术,在腐蚀防护涂层材料里加入了一些外援型智能化纳米微球。在材料发生裂纹或机械损伤后,纳米微球就会感知到环境变化,并及时向破损表面释放修复剂,继续保持防护功效。 这种智能化的感知修复能力,是“聚复盾”的最大特色,也是具有我国自主知识产权的创新技术。 “聚复盾”不仅可以延长金属材料机体的使用寿命和维护周期,有效降低因腐蚀造成的事故发生率,而且相比传统涂层材料中用来防腐蚀的有毒物质六价铬盐,更加绿色、更加安全。因此在海洋工程、现代交通运输、机械设备、能源工业、航空航天等诸多领域,都有它大展身手的空间。 科学家与企业家携手跨越“死亡谷” 2016年,在中国科学院过程所科技开发处的引荐下,李国良研究团队开始了和山东格物的合作。“最开始我也有些忐忑,因为常常听人说:‘科技成果转化是个死亡谷’。”李国良半开玩笑半认真地说。 科学技术从走出实验室,到实现商品化之间,有一个最关键的薄弱地带——“工程化放大,实现量产”。这也是大家所说的“死亡谷”。 为什么呢?李国良解释:“实验室瓶瓶罐罐中做出来的结果,放在工厂的大设备里往往很难重复,需要多次的工程试车及工程化研发。”“要实现成果顺利转化的目标,就要从源头上设计,以符合简便化、稳定化、规模化的技术要求。” 在合作中,李国良和企业渐渐有了默契:“企业理解我们要在不断验证中优化方法和结果,我们也尽量限制自己工程化放大中的尝试次数,为企业节省资金和时间。” “我们是凭着科学家的报国情怀和企业家的实干精神,携手跨越了这次科技转化的死亡谷。”山东格物董事长徐连春说。 产学研情缘一线牵 科学家和企业家之间,天然存在信息不对称。一边是“养在深闺人未识”的先进实验室成果,一边是“不惜千金求良马”的高新企业,他们之间的缘分,还须有人牵红线。 “我们所跟北京很多孵化器有合作。”中国科学院过程工程研究所科技开发处处长张凯对《中国科学报》记者说,“‘聚复盾’的成功转化,是我们科技开发处牵线北京霄图科技孵化器实现的。未来,我们也会继续为其他科研人员的创新成果寻找应用场景和转化机会。” 张凯表示,中国科学院过程所数十年来一直为工业服务。近年来,他们引进了很多像李国良这样的优秀研究人员,为他们提供舞台,去做一些跟在国外实验室里发文章不同的事情。 中国科学院过程所一直承担了大量的企业横向课题,跟众多民营企业保持着合作关系。“在这届军民融合成果展上,山东格物作为一个非常年轻的公司,依托我们中国科学院过程所研发的“聚复盾”在层层严格筛选中突围而出。这给了我们更多自信,为支撑化学材料过程工业创新升级,助力军民融合深度发展不断做出新的贡献。”张凯说。 前不久,李国良研究团队又在《德国应用化学》上发表了一项研究成果,通过模拟肌联蛋白修复肌肉损伤修复的机制,合成出具有超韧性和高拉伸强度的自修复薄膜新材料。 “由于两位同行审稿人的积极肯定,此项成果评价为VIP论文,只有不到5%的文章得到了如此正面的评价。”期刊编辑在给李国良的信中如此写道。 “不同于外援型修复技术,这项全新的本征型修复技术已经申请了国家专利。”李国良说,“希望不久的将来能再次实现成果转化,为科技服务国民经济再多尽一份力量。”