《韩国研究团队在锂金属电池电解质技术方面取得进展》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-09-05
  • 韩国科学技术院(KAIST)与LG能源解决方案的联合研究团队在锂金属电池技术领域取得新进展。该团队由化学与生物分子工程系金熙卓教授领导,其研究成果已于近期发表在《自然·能源》期刊上。

    锂金属电池因其能量密度高,被视为下一代电动汽车的潜在电源方案,但其应用长期受到枝晶问题的制约。枝晶是充放电过程中在锂金属阳极表面形成的树状晶体,可能影响电池安全与循环寿命。研究团队开发出一种新型液体电解质,能够有效抑制枝晶生成,从而提升电池性能。

    该电解质采用特殊阴离子结构,可减少锂离子结合的不均匀性,改善电极界面稳定性。即使在快速充电条件下,也能控制枝晶生长,使电池单次充电可支持约800公里续航,使用寿命超过30万公里,充电时间缩短至12分钟。

    LG能源解决方案首席技术官Je-Young Kim表示:“我们与KAIST通过前沿研究实验室持续四年合作取得多项成果。未来将继续深化产学研协作,致力于解决下一代电池技术难题。”

    金熙卓教授指出:“这项研究从界面结构机理入手,为应对锂金属电池的技术挑战提供了新路径,消除了其应用于电动汽车的一个主要障碍。”

    该研究为高能量密度电池的开发提供了实验依据和材料策略,有助于推动锂金属电池在电动汽车领域的应用。

  • 原文来源:https://www.wedoany.com/innovation/20009.html
相关报告
  • 《国家纳米中心在锂金属电池负极研究方面取得进展》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-02-18
    • 金属锂具有极高的理论比容量(3860 mAh/g,相当于商业化锂电池石墨负极的十倍)和极低的电化学反应电位,是一种极具前景的新一代储能电池(锂硫、锂空、固态金属电池等)负极材料。然而,以金属锂作为负极存在相互牵制的挑战,包括充放电过程中的锂枝晶生长、固态电解质界面膜不稳定性及伴随的巨大体积变化等,不仅降低电池效率、缩短使用寿命,还带来不可忽视的安全隐患,长期制约其实际应用。针对上述难题,各种方案已被广泛示范,如电解液成分的调控、人工界面膜的引入、三维集流体的构建等。然而,面向实际应用及超厚电极电池发展需求,在高面负载和高电流密度下实现其稳定循环仍极具挑战性。 中国科学院国家纳米科学中心研究员李祥龙一直致力于储能杂化材料的结构设计、系统工程、构效关系及应用探索,包括锂离子及锂金属电池。最近,由叶脉获得启示,李祥龙及其团队提出一种宿主空间调制策略,采用木头碳化和化学气相沉积技术制备出一类具有自支撑三维结构的碳纳米纤维网络均匀覆盖的低迂曲度碳质微沟道垂直阵列(CTC),用于锂金属复合负极。该三维宿主材料模仿叶脉中的“协作分工”,一方面,低迂曲度碳质微沟道不仅可容纳充放电过程中的体积变化,还提供长程范围内锂离子的均匀、直接和快速输运通道;另一方面,均匀覆盖的碳纳米纤维网络通过强的毛细作用提高电解液亲和力,从而作为局部储液池,促进锂离子在短程范围内的均匀分布和沉积。 基于碳质微沟道和碳纳米纤维的空间协同及锂离子输运和分布的分工协作,CTC可承受极端的面负载和面电流密度,在不同高面负载和高电流密度下(分别高达40 mAh/cm2和40 mA/cm2)表现出高的锂沉积效率及循环稳定性,且兼具高安全特征。比如,其在电流密度为10 mA/cm2和面容量为30 mAh/cm2的极端苛刻条件下可以以很低的极化、无枝晶、稳定地循环1080圈以上,基于CTC和钴酸锂正极组装的全电池在商业水平的负载条件下(3.4 mAh/cm2)循环200圈后容量保持率仍高达86%(400圈为79%)。上述研究为高性能锂及其他金属负极的设计、构建及应用提供了一种新思路和新途径。 该项工作以Spatially Hierarchical Carbon Enables Superior Long-Term Cycling of Ultrahigh Areal Capacity Lithium Metal Anodes为题于2月11日发表在Matter上。该研究得到国家自然科学基金委、中国科学院等的支持。 碳纳米纤维网络均匀覆盖的低迂曲度碳质微沟道垂直阵列的设计、结构、制备及性能
  • 《苏州纳米所在非对称凝胶电解质助力无枝晶金属锂电池研究方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-05
    • . 具有高理论比容量、低氧化还原电位的金属锂负极,有望助力下一代高能量电池的实现。然而,液态电解液体系中金属锂负极的枝晶问题饱受诟病。枝晶生长不但能够导致锂的不可逆容量损失,还可能引发电池短路乃至爆炸。科学家们对枝晶生长机理进行了广泛研究,其中得到广泛认可的 Chazalviel 模型指出,枝晶成核时间受到电解质离子浓度、阴 /阳离子迁移率和有效电流密度的影响。提高电解质的锂离子迁移率,降低阴离子迁移率,将有效延长成核时间,抑制枝晶生长。 近期, 中国科学院苏州纳米技术与纳米仿生研究所 从枝晶生长机制出发,设计了一种 促进锂离子快速传输和均匀沉积的非对称凝胶聚合物电解质 ( Asymmetric GPE) 膜,用于 无枝晶生长的金属锂电池 。 首先,经分子动力学( MD )模拟结果证明, P VDF 分子链上极性单元能以离子 -偶极子作用力结合电解质中的 PF 6 - (图 1c),而Li + 则在体系中表现出更高的扩散系数(图 1e)。利用聚合物这种性质,该团队设计了独特的膜结构用于调节电解质离子分布。其中,占主要部分的 竖直孔道层 ,能够缩短内部传输路径,实现离子快速传导;与锂负极接触面的 纳米孔层 ,起到重新分布和均匀化锂离子流的作用。充电过程中, PF 6 - 被束缚在聚合物基体上,而 Li + 能够快速传导至负极并均匀沉积 ,从而实现无枝晶金属锂电池。 以上 研究成果以 “Asymmetric Gel Polymer Electrolyte with High Lithium Ionic Conductivity for Dendrite-free Lithium Metal Batteries” 为题发表在Journal of Materials Chemistry A上 ( doi.org/10.1039/D0TA01883J )。 第一作者为中科大硕士研究生李麟阁,通讯作者为刘美男项目研究员。