《国家纳米中心在锂金属电池负极研究方面取得进展》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-02-18
  • 金属锂具有极高的理论比容量(3860 mAh/g,相当于商业化锂电池石墨负极的十倍)和极低的电化学反应电位,是一种极具前景的新一代储能电池(锂硫、锂空、固态金属电池等)负极材料。然而,以金属锂作为负极存在相互牵制的挑战,包括充放电过程中的锂枝晶生长、固态电解质界面膜不稳定性及伴随的巨大体积变化等,不仅降低电池效率、缩短使用寿命,还带来不可忽视的安全隐患,长期制约其实际应用。针对上述难题,各种方案已被广泛示范,如电解液成分的调控、人工界面膜的引入、三维集流体的构建等。然而,面向实际应用及超厚电极电池发展需求,在高面负载和高电流密度下实现其稳定循环仍极具挑战性。

    中国科学院国家纳米科学中心研究员李祥龙一直致力于储能杂化材料的结构设计、系统工程、构效关系及应用探索,包括锂离子及锂金属电池。最近,由叶脉获得启示,李祥龙及其团队提出一种宿主空间调制策略,采用木头碳化和化学气相沉积技术制备出一类具有自支撑三维结构的碳纳米纤维网络均匀覆盖的低迂曲度碳质微沟道垂直阵列(CTC),用于锂金属复合负极。该三维宿主材料模仿叶脉中的“协作分工”,一方面,低迂曲度碳质微沟道不仅可容纳充放电过程中的体积变化,还提供长程范围内锂离子的均匀、直接和快速输运通道;另一方面,均匀覆盖的碳纳米纤维网络通过强的毛细作用提高电解液亲和力,从而作为局部储液池,促进锂离子在短程范围内的均匀分布和沉积。

    基于碳质微沟道和碳纳米纤维的空间协同及锂离子输运和分布的分工协作,CTC可承受极端的面负载和面电流密度,在不同高面负载和高电流密度下(分别高达40 mAh/cm2和40 mA/cm2)表现出高的锂沉积效率及循环稳定性,且兼具高安全特征。比如,其在电流密度为10 mA/cm2和面容量为30 mAh/cm2的极端苛刻条件下可以以很低的极化、无枝晶、稳定地循环1080圈以上,基于CTC和钴酸锂正极组装的全电池在商业水平的负载条件下(3.4 mAh/cm2)循环200圈后容量保持率仍高达86%(400圈为79%)。上述研究为高性能锂及其他金属负极的设计、构建及应用提供了一种新思路和新途径。

    该项工作以Spatially Hierarchical Carbon Enables Superior Long-Term Cycling of Ultrahigh Areal Capacity Lithium Metal Anodes为题于2月11日发表在Matter上。该研究得到国家自然科学基金委、中国科学院等的支持。

    碳纳米纤维网络均匀覆盖的低迂曲度碳质微沟道垂直阵列的设计、结构、制备及性能

  • 原文来源:http://www.nengyuanjie.net/article/53687.html
相关报告
  • 《国家纳米科学中心在锂离子电池硅负极方面取得系列进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-10-21
    • 随着移动电子产品、大规模储能和电动汽车的快速发展,开发高能量密度、高功率密度、长循环寿命、高安全性的锂离子及后锂离子电池已成为当今储能领域的研究热点和焦点。发展高容量、高倍率、高稳定性的电极材料是实现这一目标的重要途径。硅材料由于其丰富的储量、极高的理论比容量等优势受到广泛关注。然而,由于其巨大的体积变化效应和固有的低导电性,硅材料循环过程中容量衰减很快,难以应用于实际化电池中。 针对上述难题,国家纳米科学中心李祥龙(中国科学院青促会会员)、智林杰研究团队提出利用纳米系统工程设计理念提升材料储锂性能(Nano Lett. 2013, 13, 5578),在材料单元尺度上解决高容量电极材料体积膨胀引起的结构、表界面、及电荷输运不稳定性问题,与此同时,在材料宏观体尺度上解决其振实密度偏低等实用化问题。基于此,开发了一系列稳定、具有协同效应、高性能的碳硅杂化电极体系,例如,含硅纳米粒子的模板碳桥连取向石墨烯宏观体(Nano Lett. 2015, 15, 6222)、仿扇贝形体的碳硅核壳杂化颗粒(Small 2018, 14, 1800752)、取向石墨烯支撑的石墨烯硅层化微粒(Nanoscale 2019, 11, 21728)、珊瑚状互联的碳包覆多孔硅线阵列(ACS Nano 2019, 13, 2307)等。进一步,基于前期研究工作以及领域前沿动态,从碳组分的化学组成、结构与形态,以及硅组分的维度和维度杂化等方面阐述了碳硅杂化材料的设计和构建方法(Adv. Mater. 2019, 31, 1804973;Mater. Sci. Eng., R 2019, 137, 1;Adv. Funct. Mater. 2019, 29, 1806061);从材料、电极及材料电极协同三个方面提出石墨烯与硅及其他高容量储能电极材料的杂化方法和策略(Chem. Soc. Rev. 2018, 47, 3189;图1),为高性能杂化结构材料及电极的合理设计提供了新视角。    图1. 石墨烯与硅及其他高容量储能电极材料的杂化方法和策略 近些年,研究团队从低成本的二氧化硅纳米颗粒出发,改进镁热还原技术、规模化制备了一种仿绣球形态的硅烯材料,其应用于锂离子电池时展现出优异的综合储锂性能(ACS Nano 2017, 11, 7476)。在此基础上,研究团队提出并发展一种“植皮式”二维共价封装策略(图2),基于绣球状硅烯进一步制备了硅氧碳键基绣球状共价双烯,其表现出卓越的综合储锂性能:在800 mA/g的电流密度下重量与体积比容量分别高达2646 mAh/g和2350 mAh/cm3,在2000 mA/g的电流密度下循环500次后重量比容量仍保持近1500 mAh/g;即使在20000 mA/g的电流密度下重量比容量仍高达810 mAh/g,体积比容量相比非共价封装和未封装材料分别高出1358%和1442%;以整体器件计算,基于该碳硅材料的全电池能量密度比基于石墨的高出40~60%,比目前的商业化锂离子电池的比能量和能量密度均高出40%以上。初步的研究也表明,二维共价封装策略在有效缓解硅体积膨胀的情况下,不仅提供了电子/锂离子高效混合传输通道,还变革材料界面、确保了电子/锂离子高效且稳定传输。研究成果以“Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation”为题于 2020年7月31在线发表于《自然通讯》(Nat. Commun. 2020, DOI: 10.1038/s41467-020-17686-4)。   图2. 植皮式二维共价封装策略,高综合性能碳硅负极构建及储锂性能 纳米系统工程理念及系列构建策略为同时提高硅以及其他高容量电极材料的循环稳定性和倍率等性能、发展新一代先进电极及锂离子电池等储能体系提供了设计思路和实用化途径。 上述研究得到了国家自然科学基金委员会和中国科学院青促会等项目的支持。
  • 《国家纳米科学中心在钙钛矿太阳能电池界面修饰研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-05-08
    • 国家纳米科学中心周惠琼课题组将生物聚合物肝素钠引入到钙钛矿太阳能电池的阴极界面,在TiO2和MAPbI3层之间起到分子桥梁的作用,钝化了界面缺陷,并同时改善了器件的效率和稳定性。该研究结果日前以“A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells”为题在线发表在Advanced Materials杂志上。   近年来,有机无机杂化钙钛矿太阳能电池因其高效廉价的特性,引发了能源转换领域的研究热潮。然而,活性层或界面的缺陷可以严重影响钙钛矿电池的器件性能和稳定性。   周惠琼课题组将肝素钠分子桥联了TiO2和MAPbI3层,研究其对缺陷钝化和器件衰减的影响。该界面层的引入同时钝化了钙钛矿活性层内的本体缺陷以及TiO2/MAPbI3界面之间的界面缺陷,从而将器件效率从17.2%提高到20.1%,并抑制了电滞回线现象和缺陷诱发的电荷复合。修饰后的器件稳定性也得到了很大的提高,在空气中放置70天后,依然保持了85%的起始效率。DFT理论计算表明肝素钠分子通过多种功能基团 (-COO-, -SO3-, or Na+) 与TiO2中的Ti4+,以及MAPbI3中的Pb2+和I-发生相互作用。这项研究阐述了一种高度简易可行的、利用生物分子提高器件性能的钙钛矿电池界面修饰策略。   该项研究是周惠琼课题组前期研究工作 (Chem. Eur. J. 2017, 23, 18140) 的进一步拓展,与国家纳米科学中心的施兴华课题组(理论计算)、裘晓辉课题组(开尔文探针测试)以及北京航空航天大学的张渊课题组(器件物理测试)通力合作,研究工作得到了中国科学院相关人才计划和国家自然科学基金等项目的资助。 钙钛矿太阳能电池界面修饰前后的器件效率和环境稳定性