《深圳大学:高内相下芝麻油滴聚结动力学的新发现——一种高效的油提取技术》

  • 来源专题:食品安全与健康
  • 编译者: 王晓梅
  • 发布时间:2025-01-13
  • 高内相下芝麻油滴聚结动力学的新发现:一种高效的油提取技术



    2024年6月,深圳大学化学与环境工程学院朱蓓薇院士团队Juncai Tu在国际期刊《Food Chemistry》(JCR一区,IF2023=8.5)发表了题为“New discovery of the coalescence

    kinetics of sesame oil droplets under a high internal phase: A highly efficient oil extraction technique”( 高内相下芝麻油滴聚结动力学的新发现:一种高效的油提取技术)的研究论文。

    摘要

    本研究开发了一种高效的芝麻油提取技术,通过微水合处理芝麻糊(内相比例约为75%),结合搅拌操作,获得了约95%的高油提取率。研究发现,搅拌使油滴尺寸增大,形成直径超过20微米的油滴,这一现象与油提取效率呈正相关(R2>0.96)。油滴聚结的频率随着搅拌时间呈指数增长,可能与水分松弛时间的减少和糊状物粘度的增加有关。本研究首次揭示了微水合处理下芝麻糊油滴在搅拌中的聚结机制,为开发新型可持续油提取技术奠定了基础。


    引言

    芝麻油因其富含不饱和脂肪酸、木脂素、维生素E等活性成分,深受市场欢迎。然而,传统热压法提取芝麻油的效率较低(产油率低于80%)。相比之下,近年来发展出的水相酶解提取法虽能实现较高提取率,但因水量需求大、废水处理成本高等原因,限制了其应用。本研究提出一种使用少量水进行微水合的芝麻油提取方法,通过适量水合提高油相聚集密度,从而实现高效的油提取。


    研究内容

    研究首先对芝麻糊进行微水合(控制内相体积比约为74.5%),然后在不同搅拌时间下观察油滴尺寸和分布的变化。通过显微成像和共聚焦激光扫描显微镜观察,发现搅拌时间延长导致油滴逐步增大至20–40微米。低场核磁共振(LF-NMR)分析显示,水分的松弛时间减少,表明水分被固体颗粒所绑定,进一步促进了油滴聚结。此外,通过分析油滴的尺寸分布及其体积贡献,证明搅拌20分钟后约85%的油滴直径超过20微米,有利于通过离心和冷压分离提取油脂。


    结论与展望

    本研究揭示了在微水合条件下,搅拌引发的油滴聚结显著提升了芝麻油的提取效率,为常温下的油提取提供了一种新思路。未来的研究可进一步优化水合量和搅拌条件,探索该技术在其他油料作物提取中的应用潜力,为绿色油提取技术的发展提供支持。


    图文赏析


    原文链接:

    https://www.sciencedirect.com/science/article/pii/S0308814624001754?via%3Dihub




  • 原文来源:https://www.sciencedirect.com/science/article/pii/S0308814624001754?via%3Dihub
相关报告
  • 《水奇异性质的新发现》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-01-02
    • 多年以来,科学家们都知道水具有奇怪的性质 其他液体如酒精和油脂在压缩时会变得更重,但是水却变得更轻,如同冰块漂浮在一杯水中。其他流体在冷却时密度逐渐变大,但奇怪的是,水在华氏39度左右或者在结冰之前密度最大。 现在瑞典的科学家已经了解到,水的有悖常理的行为源于它在两种液态下存在的奇异能力。发表在“科学”杂志上的文章,解释了尖端的传感器如何帮助揭示研究人员花费了上百年时间来试图解开的奥秘。 他们希望这一工作最终能够解释水是如何激发创造生命的。 斯德哥尔摩大学的共同作者兼化学物理学教授Anders Nilsson告诉Seeker :“水的行为相比其他液体非常奇怪。我们应该由衷的感激它,否则,我们可能不会存在。没有这些特性,生命无法存在,因为海洋的底部会在冰河时期冻结。” 通过使用日本和韩国英里长的X射线激光器,Nilsson和他的团队能够在毫秒级的间隔内看到在越来越低的温度下转变的水分子。 要认识到只有在含有杂质的情况下,水在华氏32度才会结冰。反过来说,对于绝对纯净的水,即使处在低于零下的温度多年,也可能不会冻结。在2011年,科学家发现水在直到零下55华氏度左右时,仍旧可以保持液体状态。 Nilsson说:“大多数人认为水在零摄氏度时就会结冰,但那是因为水里面有杂质。” 尼尔森的研究小组发现,在温度变低时,水会膨胀和收缩,在常规密度的水和高密度的水(重量会增加20%左右)之间交替变化。而且随着温度的下降,这种交替变化会加剧。最终在零下华氏47度左右,波动相等,各占50%。在更低的温度下,波动再次减缓,最终结冰。 图中显示了不同温度水的两种不同局部结构(高密度为红色区域,低密度液态为蓝色区域)区域之间的波动。观察到热力学响应和相关函数的最大值是温度的函数,当两个结构中的分子数目相等时,将导致在深度过冷状态下水的奇异特性的强烈增强。图片来源:斯德哥尔摩大学 Nilsson说,在那些过冷温度下,水会像罐子里的油和水一样分离。他解释到,高密度的水看起来像牛奶。 这一问题的关键是组成水分子的原子键。冰分子在原子结构内的空间比水分子大。这就是为什么它们能够漂浮在水中。随着温度的降低,纯净的水分子因这一空间而变得越来越不稠密。 相关介绍:水可能同时存在两种非常不同的液体 以前认为水只存在于单一的液体,蒸汽和固体冰三种状态之一,但这些发现为研究人员打开了一个新的世界,为水的奇异行为提供了潜在的根据。Nilsson的团队正在研究压力如何影响两种液态水。 斯德哥尔摩大学化学物理学博士研究生AlexanderSpäh在一份声明中表示:“在象水这样一个深入研究的课题中做出新发现的可能性是非常诱人和鼓舞人心的。” 文章来自seeker网站,原文题目为The Strange, Counterintuitive Properties of Water, Explained,由材料科技在线汇总整理。
  • 《丙炔酸蓖麻油:一种新型通用的生物基平台,用于无催化剂和溶剂的胺基-炔点击反应》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-01-16
    • 现如今,人口的迅速增长和随之而来的日益增加的能源和物质消耗造成了严重的环境污染问题,影响了地球的气候,威胁着人类的健康。使用生物基构建块来可持续生产聚合物,有利于缓解这些问题。由丰度高、成本低、毒性低、可再生性质、以及丰富的功能化选项、易于操作,植物油(VOs)被认为是完美的可再生替代品,是取代石油衍生单体和聚合物的最合适候选。 近日,伊斯坦布尔科技大学的Hakan Durmaz团队通过将蓖麻油与丙炔酸进行酯化反应,随后进行胺基-炔点击反应,开发了一种高度通用的新型生物基平台。由于丙炔酸酯的缺电子性质,胺基-炔点击反应在室温、无催化剂和溶剂(只要胺在室温下是低粘度液体)的条件下和5分钟内即可轻松进行。几种伯胺和仲胺均具有良好的反应性。此外,利用蓖麻油和多功能胺制备了热固性树脂,具有较好的热性能和类弹性体的力学性能。 / 丙炔酸蓖麻油的合成 / 在甲磺酸催化下,通过蓖麻油的羟基与丙炔酸酯化反应合成活化的炔烃官能化蓖麻油(方案1),1H NMR波谱如图1a所示。蓖麻油中甘油三酯单元的酯亚甲基质子(b)在4.26-4.13 ppm处观察到,而CH质子(a)在5.24 ppm,烯烃双键质子(d)在5.6-5.4 ppm。此外,在3.59 ppm处检测到与?OH基团相邻的甲烷质子(g)的特征信号。酯化后,3.59 ppm处的信号完全消失并转移到4.98 ppm。同时在 2.89 ppm处出现了新的峰(i),表明炔烃(≡CH)单元的引入。在FT-IR光谱中,看到酯化反应后羟基吸收峰(3440cm-1)消失,同时出现了≡CH(3257cm-1)和C≡C-(2113cm-1)的吸收峰,表明反应成功进行。 方案1. 丙炔酸蓖麻油的合成。 图1.丙炔酸蓖麻油的(a)1H NMR和(b)FT-IR光谱。 / 胺基-炔点击反应 / 丙炔酸蓖麻油与各种伯胺和仲胺在室温下进行体相反应,反应结果如表1所示。不管胺的结构如何,几乎都在5分钟内完成了胺基-炔点击反应,具有>99%的效率以及95%以上的收率。 表1. 不同的胺进行胺基-炔点击反应结果。 丙胺和丙炔酸蓖麻油经过胺基-炔点击反应后的产物1H NMR如图2所示(上方),末端炔烃(i)完全消失并出现新的峰,表明-C≡CH与丙胺充分反应生成烯胺结构。此外,烯胺结构中的?NH氢在7.82 ppm左右检测到,新形成的烯胺双键中的质子在1H NMR谱系取决于产生的异构体(E/Z)的结构,进一步研究发现发现E / Z比率为24/76。 对于仲胺的点击反应,作者采用了乙二胺与丙炔酸蓖麻油进行,产物的1H NMR谱图如图2(下方)所示。不同之处器导致产生纯E型异构体,而非E和Z-异构体的混合物。这些结果表明伯胺和仲胺的氨基-炔点击反应进展顺利。 图2. 丙炔酸蓖麻油与丙胺、二乙胺进行点击反应的产物的1H NMR谱图。 / 通过胺基-炔点击反应制备热固性塑料 / 随后作者使用四种不同的二胺(三乙烯四胺(TETA)、间苯二甲胺(MXDA)、哌嗪(PZ)以及Priamine 1071(DD))与丙炔酸蓖麻油通过点击反应制备热固性塑料(方案二)。与上述胺基-炔模型反应类似,丙炔酸蓖麻油和多官能胺之间的迅速发生反应,并在5 min内凝胶化。 方案2. 通过胺基-炔点击反应制备的热固性塑料的示意图。 图3a为所有热固性塑料的FT-IR光谱。可以看出炔基的特征吸收峰(3257和2113 cm–1)完全消失,此外在1600 cm–1处检测到烯胺双键的吸收峰,表明-C≡CH全部转化。通过记录1、3和5分钟时DD与丙炔酸蓖麻油的FT-IR光谱监测其凝胶化,可以看出2100 cm–1处炔丙基带的强度迅速下降。5分钟后,?C≡CH吸收峰完全消失,表明迅速发生凝胶化。 通过丙酮萃取测定热固性塑料的凝胶含量(图3c),发现DD和TETA产生非常高的凝胶含量。DD和TETA的高反应性归因于它们的相容性,脂肪族性质和高功能。另一方面,PZ和MXDA产生的凝胶含量值相对较低,这种情况归因于PZ中仲胺的低反应性以及芳香环MXDA的碱度降低和空间位阻。 图3. (a)四种热固性塑料的FT-IR光谱,(b)Priamine 107与丙炔酸蓖麻油在 2200–2000 cm-1 范围内不同时间间隔的 FT-IR 光谱以及(c)四种热固性塑料的凝胶含量(百分比)。 采用TGA研究了四种热固性塑料在N2中国的热稳定性,如图4a,b所示。所有的热固性塑料在200 °C后开始缓慢分解,最大失重温度在300–400 °C范围内。 虽然胺的结构不会导致这些降解温度的显著变化,但残炭率(图4c)取决于所用胺的结构。此外,DSC结果显示由DD、PZ 、MXDA制备的热固性塑料Tg分别为13、26和32°C,而由TETA制备的热固性塑料则在8和36°C出现两个吸热峰,表明网络不均匀,主要归因于二胺刚性不同。最后,拉伸试验表明,所得热固性塑料为弹性体,伸强度低,断裂伸长率高。DD和TETA制备的热固性塑料拉伸强度分别为0.07 ± 0.02和0.1 ±0.03 MPa。 图4. 四种热固性塑料的(a)TGA、(b)DTG以及(c)残炭率。 / 总结 / 在本工作中,作者开发了一种生物基平台,可以通过胺基-炔点击反应进行有效修饰。由于丙炔酸酯的缺电子性质,氨基-炔点击反应在室温下、无催化剂和溶剂的情况下,在5 min内轻松进行。此外,还成功地使用丙炔酸蓖麻油和多官能度胺制备了热固性塑料。所获得的热固性材料表现出更好的热性能,但机械性能较差。本研究中描述的多功能生物基平台有望对植物油进行快速直接的改性,并以实用的方式通过植物油实现各种聚合物结构,在未来用于各种应用。