《MedRixv,2月12日,Simulating the infected population and spread trend of 2019-nCov under different policy by EIR model》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-02-13
  • Simulating the infected population and spread trend of 2019-nCov under different policy by EIR model

    Hao Xiong, Huili Yan

    doi: https://doi.org/10.1101/2020.02.10.20021519

    Abstract

    Chinese government has taken strong measures in response to the epidemic of new coronavirus (2019-nCoV) from Jan.23, 2020. The number of confirmed infected individuals are still increasing rapidly. Estimating the accurate infected population and the future trend of epidemic spreading under control measures is significant and urgent. There have been reports external icon of spread from an infected patient with no symptoms to a close contact, which means the incubation individuals may has the possibility of infectiousness. However, the traditional transmission model, Susceptible-Exposed-Infectious-Recovered (SEIR) model, assumes that the exposed individual is being infected but without infectiousness. Thus, the estimating infected populations based on SEIR model from the existing literatures seems too far more than the official reported data. Here, we inferred that the epidemic could be spread by exposed (incubation) individuals. Then, we provide a new Exposed-identified-Recovered (EIR) model, and simulated the epidemic spreading processes from free propagation phase to extremely control phase. Then, we estimate of the size of the epidemic and forecast the future development of the epidemics under strong prevention interventions. According to the spread characters of 2019-nCov, we construct a novel EIR compartment system dynamics model. This model integrates two phases of the epidemic spreading: before intervention and after intervention. We assume that 2019-nCov is firstly spread without intervention then the government started to take strong quarantine measures. Use the latest reported official data, we estimate the basic parameters of the model and the basic reproduction number of 2019-nCov. Then, based on this model, we simulate the future spread of the epidemics. Both the infected population and the spreading trend of 2019-nCov under different prevention policy scenarios are estimated. The epidemic spreading trends under different quarantine rate and action starting date of prevention policy are simulated and compared.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.medrxiv.org/content/10.1101/2020.02.10.20021519v1
相关报告
  • 《 SSRN,2月13日,Simulating the Infected Population and Spread Trend of 2019-nCov Under Different Policy by EIR Model》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-14
    • Simulating the Infected Population and Spread Trend of 2019-nCov Under Different Policy by EIR Model 11 Pages Posted: 13 Feb 2020 Hao Xiong Hainan University - Department of Management Sciences Huili Yan Hainan University - Department of Tourism Management Abstract Background: Chinese government has taken strong measures in response to the epidemic of new coronavirus (2019-nCoV) from Jan.23, 2020. The number of confirmed infected individuals are still increasing rapidly. Estimating the accurate infected population and the future trend of epidemic spreading under control measures is significant and urgent. However, the common forecasting models, such as SI, SIS, SIR, SIRS and SEIR, are only suit for scenarios without non-pharmaceutical prevention interventions. And the estimating infected populations from existing literature are too far more than the official reported data. Here, we provide a two-phase EI model integrated the epidemic spreading before and after control measures. Then, we estimate of the size of the epidemic and simulate the future development of the epidemics under strong prevention interventions. Methods: According to the spread characters of 2019-nCov, we construct a novel exposed-infected (EI) compartment system dynamics model. This model integrates two phases of the epidemic spreading: before intervention and after intervention. We assume that 2019-nCov is firstly spread without intervention then the government started to take strong quarantine measures. Use the latest reported data from National Health Commission of the People’s Republic of China, we estimate the basic parameters of the model and the basic reproduction number of 2019-nCov. Then, based on this model, we simulate the future spread of the epidemics. Both the infected population and the development time of 2019-nCov under different prevention policy scenarios are estimated. And, the influences of the quarantine rate and the intervention time point of prevention intervention policy are analyzed and compared.
  • 《2月12日_通过EIR模型模拟不同政策下2019-nCov的感染人群及传播趋势》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-14
    • 2月12日_通过EIR模型模拟不同政策下2019-nCov的感染人群及传播趋势 1.时间:2020年2月12日 2.机构或团队:海南大学 3.事件概要: 2月12日,海南大学的研究人员在medRxiv预印版平台发表论文“Simulating the infected population and spread trend of 2019-nCov under different policy by EIR model”,通过构建新的EIR模型来模拟不同政策下2019-nCov的感染人群及传播趋势。 自2020年1月23日起,中国政府已采取强有力的措施应对新型冠状病毒(2019-nCoV)的流行。确诊感染人数仍在迅速增加。在控制措施下,准确估计感染人群及未来疫情传播趋势具有重要而紧迫的意义。有报道称,与无症状的感染患者密切接触后也可成为感染者,这意味着潜伏期个体可能具有感染性。但是,传统的传播模型“Susceptible-Exposed-Infectious-Recovered” (SEIR)模型,假定暴露的个体是被感染的,但没有传染性。因此,基于现有文献的SEIR模型估计感染人群似乎远远超过官方报告的数据。在该研究中,研究人员推断该流行病可能是由暴露(潜伏)的个体传播。然后,提供了一个新的“Exposed-identified-Recovered(EIR)模型”,并模拟了从自由传播阶段到极端控制阶段的流行扩散过程。模型估算了流行病的规模,并预测了在强有力的预防干预措施下流行病的未来发展。根据2019-nCov的传播特征,构建了一个新颖的EIR房室系统动力学模型。该模型整合了流行病传播的两个阶段:干预之前和干预之后,即2019-nCov首先在没有干预的情况下传播,然后政府开始采取强有力的隔离措施。使用最新报告的官方数据,研究人员估算了模型的基本参数以及2019-nCov的基本再现数值。基于此模型,模拟了流行病的未来传播。估计了不同预防政策情景下的感染人群和2019-nCov的传播趋势。模拟和比较了不同检疫率和不同防疫措施实施日期的疫情传播趋势。 *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用。 4.附件: 原文链接:https://www.medrxiv.org/content/10.1101/2020.02.10.20021519v1