《移动人工智能技术辅助的越南青春期女性膳食评估的相对有效性》

  • 来源专题:食物与营养
  • 编译者: 李晓妍
  • 发布时间:2022-10-29
  • 背景:关于中低收入国家(LMICs)青少年膳食摄入量的数据存在差距。传统的膳食评估方法是资源密集型的,在估计分量大小方面缺乏准确性。已经提出了技术辅助膳食评估工具,但很少有在低收入和中等收入国家使用的可行性得到验证。

    目标:我们评估了FRANI (Food Recognition Assistance and Nudging Insights)的相对有效性,这是一种用于越南12-18岁青春期女性(n = 36)膳食评估的移动人工智能(AI)应用程序,与加权记录(WR)标准进行比较,并将FRANI的表现与多遍24小时回忆(24HR)进行比较。

    方法:采用三种方法评估饮食摄入量:FRANI、WR和非连续3天进行的24HRs。采用混合效应模型对重复测量进行调整,使用10%、15%和20%的界限来测试营养摄入量的等效性。采用一致性相关系数(CCC)评价方法之间的一致性。确定了内存和部分大小估计偏差的错误来源。

    结果:在能量、蛋白质、脂肪和4种营养物质(铁、核黄素、维生素B-6和锌)的10%范围内,在碳水化合物、钙、维生素C、硫胺素、烟酸和叶酸的15%和20%范围内,确定FRANI app和WR之间的等效性。对于除维生素a外的所有营养物质,24小时和WR之间的差异也观察到了类似的结果,其等效范围为20%。对于能量和大多数营养物质,FRANI和WR之间的ccc(0.60, 0.81)略低于24小时和WR之间的ccc(0.70, 0.89)。记忆错误(食物遗漏或侵入)约为21%,对食物的分量估计偏差没有明显的明显模式。

    结论:与WR相比,人工智能辅助膳食评估和24HRs准确估计了青春期女性的营养摄入量。进一步改进人工智能辅助的食物识别和分量估计,可以减少误差。

  • 原文来源:https://academic.oup.com/ajcn/article/116/4/992/6659184?rss=1
相关报告
  • 《人工智能辅助材料制作》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2017-11-09
    • 近年来,材料基因组计划(Materials Genome Initiative)和材料项目(the Materials Project)等研究成果为设计用于一系列应用的新材料提供了大量的计算工具,从能源、电子到航空和土木工程。 但是,开发这些材料的过程继续依赖于经验、直觉和手工文献综述的结合。 麻省理工学院(MIT)、马萨诸塞大学阿姆赫斯特分校(University of Massachusetts at Amherst)和加州大学伯克利分校(University of California at Berkeley)的一组研究人员希望通过一种新的人工智能系统来关闭这种材料——科学自动化的缺口,该系统将通过研究论文来推断出生产特定材料的“食谱”。 麻省理工学院材料科学与工程学系的能源研究助理教授Elsa Olivetti说:“计算材料科学家们已经在‘该做什么’上取得了很大的进展,这是基于我们想要的特性来设计的材料。”“但由于成功,瓶颈已经转移到,‘好吧,现在我怎么做呢?’” 研究人员设想了一个数据库,其中包含从数百万份文件中提取的材料食谱。科学家和工程师可以输入目标材料的名称和任何其他标准——前体材料、反应条件、制造过程——并提出建议配方。 一步实现这一愿景,奥利维蒂和她的同事已经开发出一种机器学习系统,可以分析一篇研究论文,推断其段落包含材料的配方,并对其进行分类单词在这些段落根据他们的角色在食谱:目标材料的名字,数字量,设备名称、操作条件、描述性形容词,等等。 在一篇出现在最新一期的《化学材料,他们也证明了机器学习系统可以分析提取的数据来推断总体特征的类的材料,如他们的合成需要的不同温度范围-或特定特征的个人材料,如不同的物理形式时,他们将他们的制造条件有所不同。 Olivetti是这篇论文的资深作者,她和麻省理工学院的研究生爱德华·金一起,Kevin Huang,一位DMSE博士后;亚当·桑德斯(Adam Saunders)和安德鲁·麦卡勒姆(Andrew McCallum),UMass Amherst的计算机科学家;Gerbrand Ceder是加州大学伯克利分校材料科学与工程学系的校长。 填写空白 研究人员使用监督和无监督的机器学习技术训练他们的系统。“监督”是指给系统提供的培训数据首先由人进行注解;系统试图找出原始数据和注释之间的相关性。“无监督”意味着训练数据是无注释的,而系统则根据结构相似性学习将数据聚在一起。 由于材料配方的提取是一个新的研究领域,Olivetti和她的同事们并没有享受到由不同的研究团队多年积累的大型、带注释的数据集。相反,他们不得不自己注释自己的数据——最终,大约有100篇论文。 通过机器学习标准,这是一个相当小的数据集,为了改进它,他们使用了一个在谷歌开发的名为Word2vec的算法。Word2vec研究单词发生的上下文——单词在句子中的句法角色和周围的其他单词——以及组合在一起的单词,这些单词往往有类似的上下文。例如,如果一篇论文中包含了“我们将四氯化钛加热到500摄氏度”的句子,另一篇文章则包含了“氢氧化钠加热到500摄氏度”的句子,Word2vec会将“四氯化钛”和“氢氧化钠”组合在一起。 在Word2vec中,研究人员能够极大地扩展他们的训练集,因为机器学习系统可以推断出一个附加在任何给定单词上的标签很可能应用于与之相关联的其他单词。因此,研究人员可以用大约64万张纸来训练他们的系统,而不是100篇论文。 冰山一角 然而,为了测试系统的准确性,他们不得不依赖被标记的数据,因为他们没有标准来评估其在未标记数据上的性能。在这些测试中,该系统能够识别出包含食谱的段落的99%的准确性,并以86%的准确度将这些段落中的单词准确地标注出来。 研究人员希望进一步的研究能提高系统的准确性,在正在进行的工作中,他们正在探索一种深度学习技术,可以对材料配方的结构进行进一步的归纳,目标是自动设计在现有文献中没有考虑到的材料的食谱。 Olivetti先前的研究主要集中在寻找更具成本效益和环保的方法来生产有用的材料,她希望一个材料的数据库可以abet这个项目。 “这是具有里程碑意义的工作,”加州大学圣芭芭拉分校(University of California at Santa Barbara)材料科学的弗雷德(Fred)和Linda r . Wudl教授的Ram Seshadri说。“作者们通过人工智能方法,利用人工智能方法来捕捉新材料,这是一项艰巨而又雄心勃勃的挑战。”这项工作展示了机器学习的力量,但准确地说,最终的成功或失败的判断需要有说服力的实践者相信,这种方法的效用可以使他们放弃更本能的方法。 这项研究是由美国国家科学基金会、海军研究办公室、能源部和麻省理工学院能源计划的种子支持所支持的。金部分得到了加拿大自然科学和工程研究委员会的支持。 ——文章发布于2017年的11月5日
  • 《人工智能和机器人技术的使用案例》

    • 来源专题:装备制造监测服务
    • 编译者:zhangmin
    • 发布时间:2021-02-03
    • 人工智能和机器人技术正在给科技领域带来巨大的变化。人们在20年前的梦想现在已经变成了现实。从制造厂的自动化系统到餐馆里的自助机器人,科技不断发展,推动人类文明的进步。   在当今世界,人工智能和机器人作为问题解决者、伙伴和响应者为人类提供服务。如今,当人们与某家网站上的在线助理聊天时,通常以为是与客服交流,实际上却与聊天机器人聊天。人工智能技术已经取得了长足的进步,但不会止步于此。   人工智能和机器人技术正在多个领域得到应用   当人们谈论人工智能和机器人技术时,其实并不特定用于某个行业。它们得到几乎所有行业和部门的青睐,例如国防、医疗保健、汽车、健身、教育、零售、制造业、游戏等。   可以肯定地说,人工智能机器和计算机将会积极管理大部分交易。这只是一个开始。人工智能、机器学习、机器人技术必将在未来几年中得到进一步发展。数据在这些系统的开发中起着至关重要的作用,因为数据使这些机器能够自行学习。以下讨论一下人工智能和机器人技术的应用以及它们如何塑造人类的未来。   人工智能和机器人如今在哪里使用?   人工智能和机器人是自动化任务的强大组合。近年来,人工智能已广泛应用在机器人解决方案中,为以前的应用带来了学习能力和灵活性。尽管这两种技术还处于起步阶段,但二者结合使用时效果很好。   1. 虚拟助手和聊天机器人   虚拟助手和聊天机器人以其惊人的自动化水平推动着世界的发展和进步,并降低成本、提高生产力。虚拟助手是人工智能和机器学习的一种表现形式,通过模拟与人的对话。虚拟助理和聊天机器人被设计成使用自然语言处理(NLP)的功能来遵守自动规则。最近的技术进步显着提高了它们的性能,Siri、Google Assistant、Alexa都是虚拟助手的典型产品。   从回答诸如时间和天气之类的基本问题,虚拟助手将逐渐成为人们的得力助手。更好的是,它们可以与家中的家用电器设施完美融合。采用物联网技术,人们可以命令虚拟助手打开房屋中的灯具、空调、电视等电器。   2.农业机械   机器人技术和人工智能是农业可持续发展未来的最佳选择。几个世纪以来,由于环境污染、过度耕作、劳动力短缺以及人口增长,粮食供应链面临危机,它正威胁着人们最基本的生活需求。人工智能和自动化可以减轻农业劳动力老龄化的影响。有了自主无人机、自动驾驶农业机械等,农民可以花更多的时间专注于创造可持续的农业收成。   Deere公司是一家着名的农业设备制造商,因其自动驾驶机械而广受欢迎。此外,它还通过引进自动杂草喷洒器扩大了其农业服务范围。该公司利用先进的机器人技术、机器学习和计算机视觉来区分农作物和杂草以进行清除。此外,大数据正在帮助农民种植出更好的作物。大数据催生了处方农业,它使用基于网络的工具来创建地图或处方,告诉农民在某些作物和地区需要施用多少肥料。   3. 自主飞行   自主飞行器使用计算机视觉技术在空中盘旋,同时避开障碍物快速移动。随着人工智能的引入,这些飞行器变得越来越智能。从鸟瞰图监视到安全监视、录像、救援任务等功能,无人机正在革新并取代许多工作岗位。计算机视觉在自动飞行中的应用包括障碍物检测、避免碰撞、自我导航,以及目标跟踪。   机器学习可以给自动驾驶飞行器的工作方式带来巨大的变化。在无人机捕捉实时数据的同时,还使用了机载智能系统,使其能够根据实时数据自己做出决策。   这些无人机可用于城市管理和智能城市,用于高级监视、快速面部识别或跟踪目标。它们对农业也非常有益,因为它们可以监测作物,检查土壤肥力,评估土壤成分,并帮助农作物生产。其他应用可能包括:   扫描或绘制房地产中建筑物的地形; 军事侦察或与敌人作战; 用于人员跟踪和面部识别。   4. 零售、购物和时尚   零售业近年来已经从人工智能和机器学习中获益。人工智能正在帮助零售商通过数据分析更好地了解他们的目标市场。因为数据是数字世界的新货币,它可以决定业务成败。而零售商正在使用预测分析来帮助根据销售数据预测客户行为。电子商务网站正在使用基于客户的区域搜索趋势、位置和搜索历史记录的建议。此外,像亚马逊公司根据过去的销售数据为顾客提供产品推荐。   人工智能还帮助零售商通过定制发送给潜在客户的信息来增强他们的在线商店。内容生成是一个乏味的过程,但是通过人工智能的自然语言生成(NLG),零售商可以向客户发送有针对性的信息和报价。   机器人已经被引入管理库存和销售区域,从而提供更精确的精度并削减成本。而在时尚领域,人工智能应用在供应链和时尚商店。从服装的分类到缝纫衣物,这些平凡而繁杂的任务都是由人工智能系统来完成的,并具有更高的精度和更快的速度。机器人可以轻松精确地缝合,还可以检测织物材料中的缺陷,从而确保质量。   5. 安全与监视   如今的机器人使用人工智能、远程传感器,高清摄像头以及快速的计算机处理程序满足不同需求,并提供了功能完善的安全系统。专家认为,机器人可以轻松地保护指定区域,它们可以使用地图软件来创建地理围栏。   这些机器人可以用来监视地面和建筑物内部情况。它们经过智能设计,使用GPS系统,可以轻松找到几厘米范围内的物体。所以当移动时知道自己的方位。他们可以每天用安全摄像头记录和存储数据。采用人工智能的安全系统是一个以高清摄像机为基础的自我监控系统。   最新的人工智能动力安全机器人使用面部识别技术来识别进入建筑物的人员的身份,并创建一个目录,其中包含定期访问者或熟人。   6. 体育分析与活动   人工智能和机器人如今也应用在体育行业,以使体育比赛更精彩、更公平。体育活动对于某些人来说是一种情感所系,更重要的是价值数百亿美元的产业。全球的体育组织和协会都在尽最大努力获得竞争优势,并使用机器人技术和人工智能让体育爱好者有着更好的体验。   人工智能可以帮助运动员提高体能,发现队员的天赋。一些体育项目已经采用机器人裁判,而智能机器人可以帮助观众在体育场找到座位。对于那些不想到体育活动现场的人来说,采用VR耳机可以获得这样的体验,人工智能也在帮助俱乐部和团队根据之前的数据制定策略。   以下是体育产业采用的一些人工智能技术和措施:   智能应用程序和虚拟现实技术正在推动体育爱好者的参与度; 机器裁判很快将成为现实; 智能算法正在开发新游戏; 人工智能正在帮助团队管理和支持人员寻找新的明星球员; 人工智能正在协助俱乐部和球队保护其球员的健康。   7. 制造与生产   随着机器人技术和人工智能的实施,可以看到制造业和生产行业的发展。在制造业中引入人工智能技术的主要原因是弥补劳动力不足,简化整个生产过程并提高效率。在以往,制造商需要花很多精力来管理任务系统。自从机器人接管以来,可以提高工作效率。   人工智能通过使产品决策更迅速、更智能来帮助制造行业。这是一个定制产品的时代,人工智能正在帮助制造商收集有用的客户数据,这些数据用于做出基于产品的决策。此外,它还帮助制造工厂降低整体生产成本。人工智能和机器人技术是制造业的未来。为了更好地了解机器人技术和人工智能在制造业中的重要性,可以了解它们的用例:   基于需求的生产; 自动控制; 损害控制和快速维护; 产品设计和重新设计。   8. 游戏   机器人技术和人工智能影响了计算机游戏的设计和玩法。人工智能正在帮助游戏开发人员创造新角色,并模仿人类的行为。人工智能在游戏中的主要作用是收集和处理从玩家那里获得的数据。最重要的是,它使游戏开发者能够根据他们的需求和期望来创建游戏。   人工智能算法的适应性和学习性允许创建真实自然的游戏环境。   最后但并非最不重要的一点是,基于人工智能的游戏具有出色的图形展现。在以往,通常需要由数百名开发人员组成的团队来创建出色的图形,但是采用人工智能,其整个过程实现自动化,这节省了大量时间、资金和资源。   结论   人工智能和机器人技术是未来的驱动力。在接下来的十年中,人们将会看到基于人工智能惊人的技术发展。人工智能是关于数据的,一旦正确实施,人工智能将使用给定的数据使人们受益,从而使大多数流程自动化,并使人们的工作和生活更轻松。