《Science | 噬菌体蛋白改变发育中的精子的长链非编码RNA和DNA,以诱导父系效应致死》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-03-08
  • 2024年3月7日,宾夕法尼亚州立大学等机构的研究人员在Science上发表了题为Prophage proteins alter long noncoding RNA and DNA of developing sperm to induce a paternal-effect lethality的文章。

    噬菌体蛋白与真核生物大分子相互作用的程度在很大程度上是未知的。

    该研究表明,由内共生体沃尔巴克氏体的噬菌体WO编码的细胞质不相容因子A(CifA)和B(CifB)蛋白在果蝇精子发育过程中改变长链非编码RNA(lncRNA)和DNA,以建立一种称为细胞质不相容性(CI)的父系效应胚胎致死性。CifA 是一种核糖核酸酶 (RNase),可消耗对精子生成的组蛋白到鱼精蛋白转化很重要的精母细胞 lncRNA。CifA 和 CifB 都是脱氧核糖核酸酶 (DNase),可在精子发生晚期增强 DNA 损伤。lncRNA 敲低可增强 CI,诱变将 lncRNA 耗竭和随后的精子染色质完整性变化与胚胎 DNA 损伤和 CI 联系起来。

    因此,噬菌体蛋白在配子发生过程中与真核大分子相互作用,形成共生关系,这对昆虫进化和媒介控制至关重要。

  • 原文来源:https://www.science.org/doi/10.1126/science.adk9469
相关报告
  • 《温和噬菌体衣壳蛋白促进细菌超感染排除和噬菌体防御研究获进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-04-23
    • 近日,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究员王晓雪团队解析了丝状噬菌体编码的衣壳蛋白在细菌宿主超感染排除和噬菌体防御方面的作用,相关研究成果发表于环境微生物领域期刊《环境微生物学》(Environmental Microbiology)。 噬菌体是一种侵染细菌的病毒。烈性噬菌体在侵染细菌宿主后会迅速繁殖,以裂解细胞的方式从细菌宿主中释放。温和噬菌体在侵染细菌后会将自己的基因组整合到细菌基因组上,随细菌的复制而复制,成为原噬菌体,与细菌“和平共处”。在受外界环境因子刺激或细菌自身基因表达变化的情况下,原噬菌体会从细菌基因组上切离并复制,最终包装成噬菌体粒子从细菌宿主中释放。铜绿假单胞菌PAO1中的丝状原噬菌体Pf(Pseudomonas filamentous prophage)在生物膜的发育过程中被激活并被释放出来,而且释放的丝状噬菌体粒子可以重新侵染宿主细胞并大量繁殖,这一特殊的过程被定义为噬菌体的超感染(phage superinfection)。 超感染对于细菌宿主来说是非常不利的,宿主为了生存会进化出相应的对抗机制,但目前对于宿主如何排除超感染Pf噬菌体的分子机制尚不清楚。在这项研究中,研究人员发现丝状原噬菌体Pf4编码的噬菌体结构蛋白可以通过干扰IV型菌毛(T4P) 功能来产生超感染的抗性。T4P是包括丝状噬菌体在内的多种噬菌体的受体,是噬菌体识别、吸附并入侵宿主的第一步。研究发现,噬菌体的次要衣壳蛋白pVII可以与T4P元件中的PilC和PilJ直接互作,干扰T4P的功能。次要衣壳蛋白pIII与PilJ和TolR/TolA蛋白相互作用,提供部分超感染噬菌体抗性。此外,环境中存在很多铜绿假单胞菌的烈性噬菌体。研究发现,对于T4P依赖型烈性噬菌体的感染,pVII 可以提供完全的宿主保护;而对于非T4P依赖型烈性噬菌体的感染,pIII 则可以提供部分保护。 近年来,抗生素抗性在致病菌间广泛传播,由于烈性噬菌体对致病菌的专一快速杀灭作用而引起科学家的广泛关注,越来越多的被应用于多重耐药菌感染的治疗中。该项研究表明,在生物膜形成过程中被诱导激活的丝状原噬菌体在噬菌体防御过程中发挥重要作用,这很可能加速病原菌在噬菌体疗法中产生烈性噬菌体抗性。因此,在筛选可以用于噬菌体疗法的烈性噬菌体时,需要慎重考虑铜绿假单胞菌在感染过程中生物膜的形成情况,非菌毛依赖型烈性噬菌对于治疗生物膜状态下的铜绿假单胞菌感染具有更广泛的应用前景。 中国科学院南海海洋研究所2017级直博生王伟权与2016级博士研究生李阳梅为该论文的共同第一作者,由王晓雪研究员和郭云学副研究员指导完成。本研究工作得到国家自然科学基金、国家科技部重点研发计划、广东省本土创新团队、南方海洋科学与工程广东省实验室重大专项等项目的资助。 相关论文信息:https://doi.org/10.1111/1462-2920.15991
  • 《Nature | 噬菌体通过 RNA 和 DNA 结合的螺旋转螺旋蛋白控制抗CRISPR》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-07-12
    • 2024年7月10日,奥塔哥大学等机构的研究人员在Nature发表题为Phage anti-CRISPR control by an RNA- and DNA-binding helix–turn–helix protein的文章。 在所有生物体中,基因表达的调控都必须根据细胞的需要进行调整,这通常涉及到螺旋-翻转-螺旋(HTH)结构域蛋白。例如,在细菌和噬菌体之间的竞赛中,噬菌体的抗CRISPR(Acr )基因在感染后迅速表达,从而逃避CRISPR-Cas的防御;转录随后被含有HTH结构域的抗CRISPR相关(Aca)蛋白抑制,这可能是为了降低过度表达带来的健康代价。然而,单个 HTH 调节器如何调整抗CRISPR 的产生以应对噬菌体基因组拷贝的增加和Acr mRNA 的积累,目前尚不清楚。 该研究发现调节因子 Aca2 的 HTH 结构域除了通过 DNA 结合抑制 Acr 的转录合成外,还通过结合保守的 RNA 干环和阻断核糖体的进入来抑制 mRNA 的翻译。约 40 kDa Aca2-RNA 复合物的冷冻电子显微镜结构展示了多功能 HTH 结构域如何从 DNA 结合位点特异性地识别 RNA。这些组合调控模式在 Aca2 家族中非常普遍,有助于在噬菌体 DNA 快速复制的情况下抑制 CRISPR-Cas,而不会出现有毒的 Acr 过表达。鉴于含 HTH 域蛋白的普遍性,预计还会有更多的含 HTH 域蛋白通过 DNA 和 RNA 的双重结合进行调控。