《突破 | 微电子所在存内计算领域取得重要进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-07-13
  • 图神经网络小样本学习广泛应用于推荐系统、社交网络、物理建模和芯片设计等领域,但其硬件实现面临着图数据特征提取困难、能耗高以及难以集成等问题。

    针对上述问题,微电子所重点实验室科研团队在40nm 256Kb RRAM芯片上实现了图神经网络小样本学习的功能验证。在算法层面,研究团队开发了记忆增强图神经网络(Memory-augmented graph neural network, MAGNN)模型。该模型采用具有随机固定权重的回声状态图网络(Echo state graph neural network, ESGNN)作为控制器提取图数据特征,采用二值神经网络(Binary neural network, BNN)作为编码器,将全精度图数据特征向量转化为二值特征向量存储到外部记忆单元中用于检索。在硬件层面,研究团队采用40nm 256Kb RRAM芯片以存内计算方式实现了完整的MAGNN模型(包括控制器、编码器和外部记忆单元),并在引文网络CORA数据集上实现78%的准确率。相比于传统数字系统,基于RRAM芯片的MAGNN模型的核心检索延时和推理功耗分别降低70和60倍。

    图1. 基于RRAM芯片的记忆增强图神经网络模型

相关报告
  • 《微电子所在新型垂直纳米环栅器件研究中取得突破性进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2019-12-13
    • 垂直纳米环栅晶体管是集成电路2纳米及以下技术代的主要候选器件,但其在提高器件性能和可制造性等方面面临着众多挑战。在2018年底举办的国际集成电路会议IEDM上,来自IMEC的Ryckaert博士1将垂直纳米器件的栅极长度及沟道与栅极相对位置的控制列为关键挑战之一。 微电子所先导中心朱慧珑研究员及其课题组从2016年起针对相关基础器件和关键工艺开展了系统研究,提出并实现了世界上首个具有自对准栅极的叠层垂直纳米环栅晶体管(VerticalSandwichGate-All-AroundFETs或VSAFETs),获得多项中、美发明专利授权,研究成果近日发表在国际微电子器件领域的顶级期刊《IEEEElectronDeviceLetters》上(DOI:10.1109/LED.2019.2954537)。 朱慧珑课题组系统地研发了一种原子层选择性刻蚀锗硅的方法,结合多层外延生长技术将此方法用于锗硅/硅超晶格叠层的选择性刻蚀,从而精确地控制纳米晶体管沟道尺寸和有效栅长;首次研发出了垂直纳米环栅晶体管的自对准高k金属栅后栅工艺;其集成工艺与主流先进CMOS制程兼容。课题组最终制造出了栅长60纳米,纳米片厚度20纳米的p型VSAFET。原型器件的SS、DIBL和电流开关比(Ion/Ioff)分别为86mV/dec、40mV和1.8x105。 该项目部分得到中国科学院集成电路创新研究院项目(Y7YC01X001)的资助。
  • 《突破 | 北大电子学院微波光子团队与合作者在光生微波领域取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-05-21
    • 高稳定低噪声微波信号在时频计量、射电天文、雷达导航等领域发挥着不可替代的作用。传统的电学微波合成方式在稳定性和噪声控制方面已逼近技术瓶颈,而基于光电子技术的微波合成方案为突破这一瓶颈提供了新的路径。在众多方案中,由超稳激光与光频梳构成的光分频方案表现尤为突出,该系统将应用于光钟的超稳激光通过光频梳分频至微波,可产生目前已知的稳定性最高、噪声最低的微波信号(团队成员解晓鹏助理教授是此方案的纪录保持者)。然而,现有光分频系统普遍存在体积庞大、结构复杂等问题,严重制约了其实际应用。如何构建紧凑且高鲁棒性的光分频系统,并进一步探索其噪声极限,已成为微波光子领域亟待攻克的重要课题。 近5年,光子传输与通信全国重点实验室的北京大学电子学院微波光子团队与中国计量科学研究院、德国联邦物理技术研究院、北京大学物理学院等团队密切合作,提出了一种基于高相干双波长激光器与电光梳的双点分频法方案,探索了该系统的噪声极限,并取得了纪录性的成果,解决了传统方案在结构复杂性方面的难题。2025年4月29日,相关研究成果以《高相干双波长激光器及其在低噪声微波产生中的应用》(“Highly coherent two-color laser and its application for low-noise microwave generation”)为题,在线发表于《自然·通信》(Nature Communications)。 为实现双点分频法方案的噪声极限,团队采用了PDH稳频技术(如图1所示),将两台激光器同步至同一超稳光学法布里-珀罗(F-P)腔,使得两台激光器之间的相对稳定性远优于各自的绝对稳定性,最终实现了高相干的双波长激光器。PDH稳频技术被广泛应用于全球计量实验室,能够实现目前已知的最稳定连续激光。过去5年来,团队深入研究并有效抑制了双波长激光器系统中的各类噪声,双波长激光器的相对相位噪声达到-52dBc/Hz@1Hz,归一化至光频的分数频率不稳定性达到2.7E-17@1s,达到国际先进水平。 图1. 双波长激光器 在高稳定高相干双波长激光器的基础上,团队利用4.2nm的电光梳将双波长激光器的相对稳定性下转换至微波信号的稳定性,实现高稳定微波信号合成。电光梳的使用大大简化了传统光分频系统的复杂性。由于产生微波信号的相位噪声低于所有商用相位噪声分析仪的噪底,团队研制了两套独立的系统进行拍频相位噪声表征。最终产生的25GHz微波信号的相位噪声达到-74dBc/Hz@1Hz,分数频率不稳定性达6E-14@1s,与当前时间频率计量领域最好的氢钟秒稳相当,代表着双点分频法的国际最高水平。 在研究高稳定高相干双波长激光器的过程中,团队掌握了下一代光钟所需的超稳激光锁定技术。除了本工作中用于光生微波的应用外,高相干双波长激光器还被期望应用于高精度干涉仪、CPT原子钟和量子计算等领域。 图2. 电光分频系统结构与微波相位噪声测试结果