《大连化物所纳米晶多空穴转移动力学研究取得新进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-04-06
  • 近日,中国科学院大连化学物理研究所光电材料动力学特区研究组研究员吴凯丰团队基于钙钛矿纳米晶与并四苯分子构建模型体系,利用飞秒瞬态吸收光谱揭示了该体系的超快空穴转移、超长电荷分离态,以及多空穴转移动力学过程。相关成果发表于《化学科学》(Chemical Science)上。

      多电荷转移过程在光催化与太阳能转换领域占有重要地位,很多重要的光催化反应(如水分解、CO2还原等)都涉及多电荷转移过程。在这些反应中,捕光材料通常需要连续吸收多个太阳光子实现到催化剂的逐步电荷分离过程。而在这种逐步电荷分离过程中,捕光材料或者催化剂上的累积电荷会带来各种电荷复合途径,大大降低总体电荷分离效率。吴凯丰研究团队在前期工作中,通过动力学研究系统地揭示了这些电荷复合途径(JACS 2018, JACS 2018, JPCL 2018)。

      科研人员提出了一种高效的多电荷分离思路:采用较高的激发功率,在捕光材料中产生多激子并实现从捕光材料到催化剂的同步多电荷转移,从而回避各种中间复合过程。目前,从纳米晶到受体分子的多电子转移反应在国际上已有较多展示,而多空穴转移此前并无报道。其原因在于传统的纳米晶材料(如CdS、CdSe等)的光生空穴通常被表面缺陷态快速捕获,不利于实现快速空穴转移,更无法与多激子俄歇复合竞争实现多空穴转移。吴凯丰团队提出采用近期被广泛研究的钙钛矿纳米晶作为模型体系研究多空穴转移,该类纳米晶具有良好的“缺陷容忍性”,可避免空穴被缺陷态快速捕获。动力学研究发现,该体系确实存在超快的空穴转移过程(~7.6皮秒),且其电荷分离态寿命长达5.1微秒。进一步高功率激发实验证明多空穴转移可与多激子俄歇复合有效竞争,从而在每个纳米晶中实现多达5.6个激子解离。

      该研究首次展示了纳米晶体系的多空穴转移动力学过程,对采用纳米晶吸光材料驱动多电荷光化学反应具有重要指导意义,且对钙钛矿光电器件中的空穴转移具有重要启示。

      该工作得到国家重点研发计划、国家自然科学基金等的资助。

相关报告
  • 《大连化物所纳米晶三线态能量转移动力学研究取得新进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • 近日,中国科学院大连化学物理研究所光电材料动力学特区研究组研究员吴凯丰团队基于量子限域的CsPbBr3纳米晶与多环芳烃分子构建模型异质结,并结合稳态和飞秒瞬态光谱,揭示了该体系内纳米晶量子限域效应主导的三线态能量转移动力学过程,清晰地展示了转移速率对纳米晶载流子表面概率密度的线性依赖关系。相关成果发表于《美国化学会志》(Journal of the American Chemical Society)上。   多环芳烃的三线态敏化在光子上转换和光催化有机合成等领域具有重要应用。光子上转换可减小太阳能转换中的低能光子透过损失,有望使转换效率突破传统的Shockley-Queisser极限。三线态敏化的一般途径为:含重金属的敏化剂分子受光子激发后通过系间窜越产生敏化剂分子的三线态,此三线态再通过能量转移产生多环芳烃的三线态。然而,敏化剂分子的系间窜越会带来较大的能量损失(≥0.5eV),降低上转换过程的有效增益(上转换光子与激发光子的能量差)。近年来,半导体纳米晶作为三线态敏化材料开始受到广泛的关注。与传统的敏化剂分子不同的是,纳米晶具有较弱的电子-空穴交换作用,明态-暗态能量分裂极小(几个meV),所以几乎不存在系间窜越能量损失。因此,纳米晶作为三线态敏化材料可最大化光子上转换过程的有效增益。然而,由于其较大的尺寸和复杂的内部和表面态电子结构,从纳米晶到多环芳烃的三线态能量转移机理可能不同于传统的敏化剂分子,到目前为止文献中都缺乏深入系统的研究。比如,最近的研究大多采用荧光量子产率很低的半导体纳米晶(如CdSe和PbS等)作为敏化材料,且将能量转移速率的影响因素笼统地归因于纳米晶尺寸相关的能量转移驱动力和光谱重叠。   吴凯丰研究团队提出,近期在光伏和发光应用领域广受关注的钙钛矿纳米晶也是一类理想的三线态敏化材料,因其具有较高的荧光量子效率(≥60%)和对称的载流子波函数分布,可用于构建模型体系,探索纳米晶三线态能量转移的主要影响因素。光谱动力学研究发现,纳米晶尺寸相关的能量转移驱动力和光谱重叠对转移速率的影响极小;相反,纳米晶的波函数表面分布在三线态能量转移过程中起主导作用,其速率随尺寸相关的载流子表面概率密度(波函数平方)呈线性关系。纳米晶尺寸越小,量子限域效应越强,载流子在纳米晶表面的波函数分布越大,越能有效地与吸附于纳米晶表面的多环芳烃进行波函数交换从而实现三线态能量转移。这与三线态能量转移的Dexter机理是符合的。   该研究首次揭示了纳米晶到多环芳烃分子三线态能量转移的核心影响因素,对采用纳米晶吸光材料驱动的光子上转换和光催化反应具有重要指导意义。此外,该研究也表明,虽然在光伏和发光应用领域钙钛矿材料的量子限域效应未受关注,但在三线态敏化等应用领域量子限域对钙钛矿材料是不可或缺的。   该工作得到国家重点研发计划、国家自然科学基金等的资助。
  • 《我所钛氧团簇异构体动力学及构效关系研究取得新进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-01-10
    • 近日,我所吴凯丰研究员团队(11T6组)和福建物质结构研究所张健研究员、张磊研究员团队合作,报道了首例钛氧团簇中的异构体现象,并通过超快动力学研究了两个异构体在光电化学与光催化应用中的构效关系。相关工作发表于《德国应用化学》(Angew. Chem. Int. Ed.)上。   分子体系中存在很多的同分异构体现象,微小的结构差异可带来功能上的巨大差别。无机晶体也存在不同的晶相,比如TiO2常见的晶相有锐钛矿、金红石和板钛矿等;这些不同的晶相也存在很大的功能差异,就光催化性能而言普遍发现锐钛矿要优于金红石。福建物构所团队长期专注于钛氧团簇的合成与应用,这些团簇可以被看作是分子与晶体之间的过渡形态,然而团簇中的同分异构现象鲜有报道。   在本工作中,福建物构所团队合成出首例钛氧团簇中的异构体。在这对异构体中,{Ti(Ti5)}五边形单元或互相垂直排布,或互相平行排布,分别可形成PTC-49V和PTC-49H团簇。这对异构体的光电化学与光催化性能呈现出显著的差异,例如同样条件下的光催化产氢效率PTC-49V比PTC-49H高出33倍。为解释这一差异并揭示相关的构效关系,吴凯丰团队研究了PTC-49V和PTC-49H的激发态动力学和它们到电荷受体的电荷转移动力学,发现前者到乳酸(光催化牺牲试剂)的空穴转移速率要比后者高出1-2个数量级,可有效解释两者的光催化性能差异。   PTC-49V中的{Ti8O14}结构单元在锐钛矿TiO2也同样存在,因此PTC-49V可看做是锐钛矿TiO2的分子模型。本研究中发现的构效关系也为锐钛矿TiO2优异的光催化性能提供一个可能的分子层面的全新视角。   该工作得到了国家重点研发计划的资助。