《西北高原所在土地利用变化过程中土壤微生物对土壤多功能性调控机制方面取得新进展》

  • 来源专题:耕地与绿色发展
  • 编译者: 张毅
  • 发布时间:2024-11-18
  • 土地利用变化对陆地生态系统具有广泛的影响。然而,青藏高原高寒生态敏感区土地利用变化对土壤环境因子、土壤微生物的影响以及初级生产力、土壤微生物和土壤多功能性之间的关系研究较少。特别是对于高寒生境土壤微生物多样性及其共生网络复杂性与土壤多功能性之间关系仍缺乏系统了解。

    中国科学院西北高原生物研究所高原药用资源生态保护与繁育学科团队在环青海湖区域分别选择高寒草原、农田、人工灌丛为研究对象,构建了从天然草原—农田—人工灌丛的土地利用类型转化序列,测定了初级生产力、土壤真菌和细菌以及土壤因子。研究表明:随着农田向人工灌丛的转化土壤环境因子和微生物群落组成呈现出逐渐向天然草地恢复的趋势,土壤磷含量对土壤微生物群落组成的恢复发挥关键调节作用。退耕还林后土壤微生物共生网络复杂性的恢复比微生物群落组成和功能类群的恢复需要更长的时间。最重要的是,本研究揭示了土壤微生物共生网络复杂性在土地利用变化过程中介导初级生产力对土壤多功能性的影响。这些发现弥补了我们对咸水湖生境周围土地利用变化过程认识的不足,对于拓宽我们对土地利用变化的认识,促进全球高寒生态系统恢复决策的制定具有重要意义。

    相关研究结果以?Soil microbial network complexity predicts soil multifunctionality better than soil microbial diversity during grassland-farmland-shrubland conversion on the Qinghai-Tibetan Plateau?为题于2024年10月11日发表于国际著名农林科学期刊?Agriculture, Ecosystems & Environment(5年影响因子/JCR分区:6.4/Q1)。西北高原所肖元明助理研究员为论文第1作者,周国英研究员为通讯作者。该研究得到青海省自然科学基金团队项目(2023-ZJ-902T)、中国科学院战略性先导计划项目(XDA26020201-2)以及中国科学院-青海省国家公园联合专项(LHZX-2020-11-1)的支持。

  • 原文来源:http://nwipb.cas.cn/xwzx/kyjz/202411/t20241112_7438692.html
相关报告
  • 《成都生物研究所在土地利用变化影响土壤磷相关微生物方面获得新进展》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-06-21
    •     磷是植物和土壤生物发育的第二大必需营养元素,但其在土壤中的生物有效性通常较低,各类陆生生态系统普遍存在磷限制的现象。土壤微生物通过产生磷酸酶等参与土壤磷循环,提高土壤磷的生物有效性。土地利用变化可通过改变植被覆盖和其他相关属性进而影响土壤物理、化学和生物特性,对土壤磷酸酶活性和相关微生物群落具有显著的影响。青藏高原是世界屋脊、亚洲水塔,是地球第三极,也是全球最脆弱的地区之一,生态系统容易受到全球气候变化和人类活动的影响,该区域在环境和植被覆盖变化方面具有高度多样性。了解土地利用变化对青藏高原地区土壤磷酸酶活性和相关微生物群落的影响,对评估该区域土壤磷循环和地力可持续性具有至关重要的意义。     基于此,中国科学院成都生物研究所博士研究生Belayneh Azene和朱仁欢在博士生导师潘开文研究员和张林副研究员的指导下,以天然林、人工林、农田和灌木林四种土地利用类型的土壤为研究对象,探讨青藏高原东南缘亚高山生态系统土地利用类型变化对土壤磷酸酶活性、磷酸酶编码基因和相关微生物群落的影响。结果表明:磷的有效性在天然林转化为农田后显著增加。天然林转化为其他土地利用方式后,由于土壤有机碳、水分和全氮的降低,磷酸酶活性显著降低。检测到13个与磷溶解和磷矿化相关的基因,其中phoD和gcd分别是主要的磷矿化和磷溶解基因。农田土壤中gcd基因的丰度较高,而天然林中phoD基因的丰度较高。gcd基因丰度主要受pH和全磷控制,phoD基因丰度主要受pH和速效磷控制;土壤水分含量、有机碳和全氮调控研究检测到的其他基因。编码gcd基因的主要微生物门包括酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和芽单胞菌门(Gemmatimonadetes),编码phoD基因的主要微生物门包括变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)和Candidatus Rokubacteria。大多数携带gcd和phoD的微生物主要受pH、有效磷和总磷的调控,部分微生物门也受土壤水分含量、有机碳和全氮的调节。土地利用变化显著改变了土壤磷酸酶以及磷酸酶编码基因和相关微生物的丰度,这些变化对研究土壤磷循环以及该区域土壤磷的可持续管理具有重要意义。
  • 《南京土壤所在土壤自然微生物组降解机制方面取得进展》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-09-10
    • 土壤自然微生物组具有高度的结构复杂性、代谢多样性和抗环境干扰性,因而它具有迅速调节自身结构来响应和适应复杂环境变化的能力,从而实现单一菌株难以完成或无法完成的环境功能。土壤自然微生物组是环境生物修复的重要资源,它能够直接参与持久性有机污染物的降解(如多环芳烃、多氯联苯等)。因此,如何挖掘土壤自然微生物组的环境修复功能,是当前生物修复领域的研究前沿和热点。 中国科学院南京土壤研究所研究员滕应课题组最新发表在Science of the Total Environment期刊上的论文提出了基于土壤自然微生物群落构建复合微生物组的生物修复策略,可用于高分子量多环芳烃污染土壤的生物修复。该研究将环境功能强(芘降解能力)的水稻土自然微生物群落引入到功能较弱的红壤中,使不同微生物成员相互接触,通过直接或间接生物信息交流,构建出新的相互作用关系网络(包括微生物之间、微生物与环境之间),从而形成稳态的土壤自然复合微生物组,并显著促进土壤中多环芳烃芘的生物降解。研究结果为多环芳烃污染土壤微生物修复提供了新思路、新方法。 吴晓燕 摘编自http://www.cas.cn/syky/201807/t20180705_4657249.shtml 原文标题:南京土壤所在多环芳烃污染土壤自然复合微生物组降解机制方面取得进展