《水通道蛋白门控分子机制研究中取得进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-07-07
  • 近日,中国科学院武汉物理与数学研究所研究员杨俊团队和华南理工大学教授王菊芳团队合作,在水通道蛋白的门控分子机制方面取得新进展。他们在功能活性状态下对水通道蛋白AqpZ关键“门控”残基的结构、动力学以及水分子接近性进行研究,揭示了水通道蛋白AqpZ的水分子通道处于“永久开放”状态。相关研究结果发表在6月27日的《美国化学会志》(Journal of the American Chemical Society)杂志上(内封面)。

    水通道蛋白为细胞膜上特异的水分子通道,与人类健康和疾病密切相关。在以往的研究中,人们根据水通道蛋白晶体结构的水道分析,提出“盖帽”以及“挤压”门控机制。其中AqpZ为典型的“挤压”门控机制代表。在AqpZ同源四聚体的晶体结构模型中,R189侧链存在“朝上”和“朝下”两种不同构象,进一步分子动力学模拟发现R189侧链能够上下快速摆动。R189残基被认为是AqpZ的水道门控开关,它通过侧链上下摆动,改变附近水道直径大小从而控制水道开关。

    膜蛋白的结构和功能状态对环境影响敏感,细微的环境变量都可能造成膜蛋白结构和分子机制认识的偏差。在晶体环境中AqpZ的R189侧链的不同构象分布可能来自R189的不同功能状态或者环境因素偏差,因此在天然磷脂膜环境中,AqpZ蛋白的R189侧链门控分子机制值得探究和验证。

    在该项研究工作中,研究人员首先通过化学位移分布以及偶极耦合常数测量证实AqpZ的R189侧链在磷脂膜环境只存在一种稳定的刚性状态,不具有大幅度的运动。然后通过CS-Rosetta手段计算出AqpZ在磷脂膜环境中的三维结构模型,发现R189侧链胍基和A117残基羰基形成稳定的H键,将R189侧链稳定在朝上“打开”状态。最后通过蛋白水分子交换常数测量,验证了R189侧链朝上“打开”分布的合理性。通过AqpZ的结构、动力学以及水分子交换常数分析,证实了AqpZ在功能活性状态下R189侧链朝上稳定分布,处于永久“开放”状态。这项工作提出了水通道蛋白研究中全新的门控分子机制,加深了水通道蛋白的认识,同时也强调了研究环境对膜蛋白分子机制研究的重要性。

    这项工作得到了科技部、国家自然科学基金委和中国科学院的基金资助。新加坡国立大学教授林青松、美国强磁场中心博士傅日强、美国NIH糖尿病消化与肾病研究所博士沈杨、武汉物数所研究员郑安民参与了这项研究工作。

  • 原文来源:http://news.bioon.com/article/6724519.html
相关报告
  • 《水通道蛋白门控分子机制研究中取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-07
    • 近日,中国科学院武汉物理与数学研究所研究员杨俊团队和华南理工大学教授王菊芳团队合作,在水通道蛋白的门控分子机制方面取得新进展。他们在功能活性状态下对水通道蛋白AqpZ关键“门控”残基的结构、动力学以及水分子接近性进行研究,揭示了水通道蛋白AqpZ的水分子通道处于“永久开放”状态。相关研究结果发表在6月27日的《美国化学会志》(Journal of the American Chemical Society)杂志上(内封面)。 水通道蛋白为细胞膜上特异的水分子通道,与人类健康和疾病密切相关。在以往的研究中,人们根据水通道蛋白晶体结构的水道分析,提出“盖帽”以及“挤压”门控机制。其中AqpZ为典型的“挤压”门控机制代表。在AqpZ同源四聚体的晶体结构模型中,R189侧链存在“朝上”和“朝下”两种不同构象,进一步分子动力学模拟发现R189侧链能够上下快速摆动。R189残基被认为是AqpZ的水道门控开关,它通过侧链上下摆动,改变附近水道直径大小从而控制水道开关。 膜蛋白的结构和功能状态对环境影响敏感,细微的环境变量都可能造成膜蛋白结构和分子机制认识的偏差。在晶体环境中AqpZ的R189侧链的不同构象分布可能来自R189的不同功能状态或者环境因素偏差,因此在天然磷脂膜环境中,AqpZ蛋白的R189侧链门控分子机制值得探究和验证。 在该项研究工作中,研究人员首先通过化学位移分布以及偶极耦合常数测量证实AqpZ的R189侧链在磷脂膜环境只存在一种稳定的刚性状态,不具有大幅度的运动。然后通过CS-Rosetta手段计算出AqpZ在磷脂膜环境中的三维结构模型,发现R189侧链胍基和A117残基羰基形成稳定的H键,将R189侧链稳定在朝上“打开”状态。最后通过蛋白水分子交换常数测量,验证了R189侧链朝上“打开”分布的合理性。通过AqpZ的结构、动力学以及水分子交换常数分析,证实了AqpZ在功能活性状态下R189侧链朝上稳定分布,处于永久“开放”状态。这项工作提出了水通道蛋白研究中全新的门控分子机制,加深了水通道蛋白的认识,同时也强调了研究环境对膜蛋白分子机制研究的重要性。 这项工作得到了科技部、国家自然科学基金委和中国科学院的基金资助。新加坡国立大学教授林青松、美国强磁场中心博士傅日强、美国NIH糖尿病消化与肾病研究所博士沈杨、武汉物数所研究员郑安民参与了这项研究工作。
  • 《大豆种子油脂与蛋白平衡调控机制研究取得进展》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2025-09-08
    • 大豆是重要的粮油兼用作物。大豆种子中的油分与蛋白质含量是决定其经济价值的关键性状,但二者之间存在负相关关系。打破这种制约、实现油分与蛋白质含量的协同提升,是大豆育种中的重要挑战。有研究发现,大豆种子中糖含量与油分正相关,而与蛋白质含量负相关,表明糖可能作为关键信号分子参与调控油分与蛋白质的平衡,但具体分子机制尚不明确。 前期,中国科学院东北地理与农业生态研究所科研团队发现,糖转运蛋白GmSWEET10a/b通过介导糖从种皮向胚的运输,正向调控种子油分积累,并负向调控蛋白质含量。本研究中,基于对GmSWEET10a/b双突变体(gmsweet10a,b)的转录组与代谢组数据分析,科研人员解析了糖转运过程调控大豆油分-蛋白质平衡的分子机制。空间代谢组分析显示,在gmsweet10a,b双突变体中,胚的糖含量降低,表明胚处于糖饥饿状态。转录代谢联合分析表明,突变体胚中用于油分合成的碳前体供应不足,同时蔗糖代谢、脂肪酸生物合成及三酰甘油组装相关基因的表达均下调。相反地,贮藏蛋白11S、2S球蛋白和7S β-伴大豆球蛋白编码基因表达上调。这些变化共同导致突变体种子中油分含量下降而蛋白质含量上升。进一步,研究鉴定出GmSnRK1和GmACO1两个关键枢纽基因。GmSnRK1作为能量感受器,可能整合蔗糖信号与碳代谢流;GmACO1通过参与乙烯生物合成途径,影响种子内部的糖水平和油分-蛋白质比例。 上述发现为解析大豆种子中油分与蛋白质积累的复杂调控网络提供了新的分子线索。 近期,相关研究成果在线发表在《植物杂志》(The Plant Journal)上。研究工作得到国家自然科学基金和中国科学院相关项目等的支持。