《MedRixv,2月5日,Assessing spread risk of Wuhan novel coronavirus within and beyond China, January-April 2020: a travel network-based modelling study》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-02-06
  • Assessing spread risk of Wuhan novel coronavirus within and beyond China, January-April 2020: a travel network-based modelling study

    Shengjie Lai, Isaac Bogoch, Nick Ruktanonchai, Alexander Watts, Yu Li, Jianzing Yu, Xin Lv, Weizhong Yang, Hongjie Yu, Kamran Khan, Zhongjie Li, Andrew J Tatem

    doi: https://doi.org/10.1101/2020.02.04.20020479

    Abstract

    Objective: To estimate the potential risk and geographic range of Wuhan novel coronavirus (2019-nCoV) spread within and beyond China from January through to April, 2020. Design: Travel network-based modelling study. Setting and participants: General population travelling from Wuhan and other high-risk cities in China. Main outcome measures: Based on de-identified and aggregated mobile phone data, air passenger itinerary data, and case reports, we defined the relative importation risk and internal and international destinations of 2019-nCoV from Wuhan and other high-risk cities in China. Results: The cordon sanitaire of Wuhan is likely to have occurred during the latter stages of peak population numbers leaving the city before Lunar New Year (LNY), with travellers departing into neighbouring cities and other megacities in China, and a high proportion of cases likely travelled with symptoms at the early stage of the outbreak. Should secondary outbreaks occur in 17 high-risk secondary cities, they could contribute to seeding the virus in other highly connected cities within and beyond China after the LNY holiday. We estimated that 59,912 air passengers, of which 834 (95% UI: 478 - 1349) had 2019-nCoV infection, travelled from Wuhan to 382 cities outside of mainland China during the two weeks prior to the lockdown of Wuhan. The majority of these cities were in Asia, but major hubs in Europe, the US and Australia were also prominent, with strong correlation seen between predicted importation risks and reported cases seen. Because significant spread has already occurred, a large number of airline travellers (3.3 million under the scenario of 75% travel reduction from normal volumes) may be required to be screened at origin high-risk cities in China and destinations across the globe for the following three months of February to April, 2020 to effectively limit spread beyond its current extent. Conclusion: Further spread of 2019-nCoV within China and international exportation is likely to occur. All countries, especially vulnerable regions, should be prepared for efforts to contain the 2019-nCoV infection.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.medrxiv.org/content/10.1101/2020.02.04.20020479v1
相关报告
  • 《MedRixv,2月18日,(第2版更新)Early dynamics of transmission and control of COVID-19: a mathematical modelling study》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-20
    • Early dynamics of transmission and control of COVID-19: a mathematical modelling study Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, CMMID nCoV working group, John Edmunds, Sebastian Funk, Rosalind M Eggo doi: https://doi.org/10.1101/2020.01.31.20019901 Abstract Background: An outbreak of the novel coronavirus SARS-CoV-2 has led to 46,997 confirmed cases as of 13th February 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Methods: We combined a stochastic transmission model with data on cases of novel coronavirus disease (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January and February 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. Findings: We estimated that the median daily reproduction number, Rt , declined from 2.35 (95% CI: 1.15-4.77) one week before travel restrictions were introduced on 23rd January to 1.05 (95% CI: 0.413-2.39) one week after. Based on our estimates of Rt,we calculated that in locations with similar transmission potential as Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population. Interpretation: Our results show that COVID-19 transmission likely declined in Wuhan during late January 2020, coinciding with the introduction of control measures. As more cases arrive in international locations with similar transmission potential to Wuhan pre-control, it is likely many chains of transmission will fail to establish initially, but may still cause new outbreaks eventually. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《MedRixv,2月5日,Network-based Drug Repurposing for Human Coronavirus》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-06
    • Yadi Zhou, Yuan Hou, Jiayu Shen, Yin Huang, William Martin, Feixiong Cheng doi: https://doi.org/10.1101/2020.02.03.20020263 Abstract Human Coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle east respiratory syndrome coronavirus (MERS-CoV), and 2019 novel coronavirus (2019-nCoV), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV. Drug repurposing, represented as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV-host interactome and drug targets in the human protein-protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV has the highest nucleotide sequence identity with SARS-CoV (79.7%) among the six other known pathogenic HCoVs. Specifically, the envelope and nucleocapsid proteins of 2019-nCoV are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and known HCoV-host interactions in the human protein-protein interactome, we computationally identified 135 putative repurposable drugs for the potential prevention and treatment of HCoVs. In addition, we prioritized 16 potential anti-HCoV repurposable drugs (including melatonin, mercaptopurine, and sirolimus) that were further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. Finally, we showcased three potential drug combinations (including sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the Complementary Exposure pattern: the targets of the drugs both hit the HCoV-host subnetwork, but target separate neighborhoods in the human protein-protein interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations toward future clinical trials for HCoVs. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.