《MedRixv,2月18日,(第2版更新)Early dynamics of transmission and control of COVID-19: a mathematical modelling study》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-02-20
  • Early dynamics of transmission and control of COVID-19: a mathematical modelling study

    Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, CMMID nCoV working group, John Edmunds, Sebastian Funk, Rosalind M Eggo

    doi: https://doi.org/10.1101/2020.01.31.20019901

    Abstract

    Background: An outbreak of the novel coronavirus SARS-CoV-2 has led to 46,997 confirmed cases as of 13th February 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Methods: We combined a stochastic transmission model with data on cases of novel coronavirus disease (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January and February 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. Findings: We estimated that the median daily reproduction number, Rt , declined from 2.35 (95% CI: 1.15-4.77) one week before travel restrictions were introduced on 23rd January to 1.05 (95% CI: 0.413-2.39) one week after. Based on our estimates of Rt,we calculated that in locations with similar transmission potential as Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population. Interpretation: Our results show that COVID-19 transmission likely declined in Wuhan during late January 2020, coinciding with the introduction of control measures. As more cases arrive in international locations with similar transmission potential to Wuhan pre-control, it is likely many chains of transmission will fail to establish initially, but may still cause new outbreaks eventually.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.medrxiv.org/content/10.1101/2020.01.31.20019901v2
相关报告
  • 《MedRxiv,2月18日,Early dynamics of transmission and control of COVID-19: a mathematical modelling study》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-19
    • Early dynamics of transmission and control of COVID-19: a mathematical modelling study Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, CMMID nCoV working group, John Edmunds, Sebastian Funk, Rosalind M Eggo doi: https://doi.org/10.1101/2020.01.31.20019901 Abstract Background: An outbreak of the novel coronavirus SARS-CoV-2 has led to 46,997 confirmed cases as of 13th February 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Methods: We combined a stochastic transmission model with data on cases of novel coronavirus disease (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January and February 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. Findings: We estimated that the median daily reproduction number, Rt , declined from 2.35 (95% CI: 1.15-4.77) one week before travel restrictions were introduced on 23rd January to 1.05 (95% CI: 0.413-2.39) one week after. Based on our estimates of Rt,we calculated that in locations with similar transmission potential as Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population. Interpretation: Our results show that COVID-19 transmission likely declined in Wuhan during late January 2020, coinciding with the introduction of control measures. As more cases arrive in international locations with similar transmission potential to Wuhan pre-control, it is likely many chains of transmission will fail to establish initially, but may still cause new outbreaks eventually. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《MedRixv,2月28日,(第2版更新)Transmission potential of the novel coronavirus (COVID-19) onboard the Diamond Princess Cruises Ship, 2020》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-29
    • Transmission potential of the novel coronavirus (COVID-19) onboard the Diamond Princess Cruises Ship, 2020 Kenji Mizumoto, Gerardo Chowell doi: https://doi.org/10.1101/2020.02.24.20027649 Abstract An outbreak of COVID-19 developed aboard the Princess Cruises Ship during January-February 2020. Using mathematical modeling and time-series incidence data describing the trajectory of the outbreak among passengers and crew members, we characterize how the transmission potential varied over the course of the outbreak. Our estimate of the mean reproduction number in the confined setting reached values as high as ~11, which is higher than mean estimates reported from community-level transmission dynamics in China and Singapore (approximate range: 1.1-7). Our findings suggest that Rt decreased substantially compared to values during the early phase after the Japanese government implemented an enhanced quarantine control. Most recent estimates of Rt reached values largely below the epidemic threshold, indicating that a secondary outbreak of the novel coronavirus was unlikely to occur aboard the Diamond Princess Ship. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.