《我所多相酸碱催化研究取得新进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-10-17
  •         在纳米和原子水平上研究酸碱催化是多相催化领域颇具挑战性的课题,其难点在于既要考虑活性中心的几何结构和位置,也要考虑活性位点的酸碱强度。日前,我所洁净能源国家实验室(筹)生物能源研究部生物能源化学品研究组(DNL0603)王峰研究员团队在多相酸碱催化研究中取得新进展,其结果印证了上述酸碱催化研究中的难点问题。

      该研究团队在二氧化铈稳定的钌簇多相催化剂(Ru-clusters/ceria)的研究中发现,在部分氧化的钌簇(1 nm)与二氧化铈界面处存在由氧空位与界面氧()构成的路易斯酸碱对,并在此基础上首次提出“界面路易斯酸碱对”(interfacial Lewis acid-base pair)的概念(J. Am. Chem. Soc.)。其进一步研究发现,Ru-clusters/ceria催化剂可催化烯烃、CO和胺的三分子反应,生成新的C-C、C-N和C=N化学键,从而合成出喹唑啉酮类化合物。该工作现已在线发表于《德国应用化学》(Angew. Chem. Int. Ed.),并被该刊遴选为热点文章(Hot Paper)。

            上述研究认为,烯烃、CO和胺的三分子反应首先经历烯烃的胺羰基化反应生成中间产物酰胺,然后中间产物酰胺在CeO2路易斯酸位点的催化作用下脱去一分子水,得到产物喹唑啉酮类化合物,其分离收率最高可达99%。由于烯烃的胺羰基化反应必须在酸性条件下进行,而胺作为碱性分子不利于反应的进行,因此中间产物酰胺的生成为该反应的难点。本研究则克服了这一困难:利用Ru/CeO2中的界面路易斯酸碱对成功实现了对胺的活化解离,在界面氧处原位形成布朗斯特酸()。该研究为喹唑啉酮类化合物的合成提供了一条环境友好的新路径,也进一步扩展了“界面路易斯酸碱对”概念的应用。

      上述研究得到国家自然科学基金、中国科学院战略性先导科技专项的资助。

相关报告
  • 《我所纳米反应器研究取得新进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-10-17
    •         近日,我所微纳米反应器与反应工程学创新特区研究组(05T7组)刘健研究员团队在微/纳米反应器的构筑方面取得新进展:通过设计一种亚微米反应器,实现了苯乙炔加氢高选择性的制取苯乙烯。该工作发表在《先进功能材料》(Adv. Funct. Mater.)上,并被选为当期的背封面(Back Cover)论文。   设计合适的反应器并优化操作条件是化学工程中至关重要的步骤。在自然界中,化学转化往往以串联反应的形式在限域的空间内完成,这种限域的空间可以是几个纳米的酶,也可以是微米级的细胞。在材料科学领域,通过模拟细胞而设计的微/纳米反应器,不但可以提高反应的效率和选择性,而且这些“人造细胞”在高温烧结下还可以表现出优异的稳定性。然而,在设计微/纳米反应器时,如何精确控制组成,以及如何选择活性位点这两个催化反应所必需的问题仍然具有挑战性。         我所李灿院士和杨启华研究员之前在纳米反应器研究方面取得了系列进展,在此基础上,刘健研究团队与中国科学院金属所等科研机构合作,成功构建了一种“蛋黄-蛋壳”结构的亚微米反应器,他们将负载金属纳米粒子的亚微米反应器合成为氧化锌-微孔碳核壳(Pd&ZnO@carbon)结构。该亚微米反应器作为一种催化剂在苯乙炔加氢制苯乙烯反应中具有高选择性(大于99%)。实验结果表明,Pd&ZnO@carbon颗粒具有优异的催化性能,其转化率和选择性远远高于在相同Pd负载量下的Pd/ZnO(2.2倍)和Pd/C(1.7倍)颗粒。此外,Pd&ZnO@carbon亚微米反应器显示出优异的催化稳定性,反应25小时后仍没有失活。这种亚微米反应器为氧化锌核与碳壳之间创造了空隙,从而为多相催化反应中反应物的富集提供了独特的反应环境,它还可以通过原位生长ZnO核,形成一种碱性气氛,便于苯乙烯脱附,避免过度氢化。亚微米反应器的碳外壳可以保护催化核心纳米颗粒抑制其团聚。同时,核与壳之间的空隙空间,为多种用途的微/纳米反应器或纳米容器储存货物时提供足够的容纳空间。该研究有助于合理设计化学性能增强的多功能催化剂。   以上研究得到大连化物所创新基金的资助。
  • 《大连化物所单原子催化研究取得新进展 》

    • 来源专题:中国科学院亮点监测
    • 编译者:liuzh
    • 发布时间:2018-09-07
    •   近日,中国科学院大连化学物理研究所航天催化与新材料研究室研究员乔波涛、中国科学院院士张涛研究团队在单原子催化研究方面取得新进展,发现单原子催化剂在醇选择性氧化反应中具有远超纳米催化剂的活性和选择性,首次提出并证明单原子催化剂界面最大化的特性是催化剂具有这种优异表现的重要原因。该研究工作发表于《德国应用化学》(Angew. Chem. Int. Ed.)上并得到审稿人的高度评价。