《研究揭示RNA病毒聚合酶具有一个与宿主适应相关的特征区域》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2021-01-20
  • RNA病毒编码的依赖RNA的RNA聚合酶(RNA-dependent RNA polymerase,简称RdRP)是一类独特的核酸聚合酶,在病毒基因组复制和转录过程中发挥核心作用,是抗病毒药物研究的热点靶标。病毒的RdRP由于可与其他功能域融合或与其他病毒蛋白共折叠,其整体结构多样性较高,但其催化核心区的三维结构则较为保守,因此RdRP兼具多样性和保守性。由于RNA病毒的宿主范围几乎囊括了所有细胞形式的生命体,在与不同宿主的共同进化过程中,RdRP作为RNA病毒最保守的蛋白,其与病毒的宿主适应性之间的关联并不清晰。

    黄病毒包括乙型脑炎病毒(Japanese encephalitis virus,简称JEV)、登革病毒(dengue virus,简称DENV)、寨卡病毒、蜱传脑炎病毒(tick-borne encephalitis virus,简称TBEV)等多种人类致病病原,是一类分布广泛、种类繁多的单股正链RNA病毒,与丙型肝炎病毒和经典猪瘟病毒同属于黄病毒科。黄病毒大多由吸血节肢动物如蚊和蜱作为媒介传播,可引起人类脑炎或出血性疾病,对人类健康构成重大威胁。黄病毒的RdRP位于病毒编码的非结构蛋白NS5的羧基端,与氨基端的甲基转移酶(MTase)形成天然融合体。此前蚊传黄病毒的NS5已有多个三维结构报道,包括全长蛋白、MTase区和RdRP区的结构,而蜱传黄病毒NS5蛋白的全长结构及RdRP三维结构则未获解析。

    中国科学院武汉病毒研究所研究员龚鹏团队长期从事病毒RdRP的催化与调控机制研究,此前已分别解析了JEV和DENV的NS5全长蛋白晶体结构(Lu and Gong, PLoS Pathogens 2013; Wu et al., PLoS Pathogens 2020),并与武汉病毒所研究员张波团队合作,系统性揭示了NS5的构象多样性和保守性以及MTase调控RdRP的分子机制(Li et al. PLoS Neglected Tropical Diseases 2014; Wu, et al. Journal of Virology 2015; Wu et al., PLoS Pathogens 2020)。科研人员近期解析了分辨率为1.9埃的TBEV MTase晶体结构(PDB号7D6M,图1A)和分辨率为3.2埃的TBEV RdRP的晶体结构(PDB号7D6N,图1B),获得了首个蜱传黄病毒RdRP的三维结构信息。通过黄病毒RdRP的序列分析以及与结构已知的蚊传黄病毒RdRP的结构进行比较,发现在RdRP保守的催化基序(motif)B和C之间存在一个值得关注的区域(以下称B-C连接区)。该区域位于RdRP手掌区的底部且暴露于蛋白表面,且在黄病毒属的不同宿主分类中具有明显的宿主相关多样性(图1B及图2)。

    研究设计了TBEV和JEV病毒间B-C连接区的替换突变,在酶学水平证实突变对RdRP催化功能不构成本质影响(图3A、B)。龚鹏团队与武汉病毒所研究员王汉中/郑振华团队和张波团队合作,在细胞水平分别评测突变对TBEV和JEV的影响,研究表明在两种病毒体系中突变后的病毒不能维持在细胞中的增殖(图3C、D)。这些结果提示B-C连接区很可能参与了RdRP催化以外与病毒增殖相关的重要过程。通过对正链、负链和双链RNA病毒中的代表性RdRP的B-C连接区进行结构与序列的系统分析,在RNA病毒大家族中发现该区域在结构和序列长度方面具有较高的多样性(图4),提示RdRP的B-C连接区很可能是RNA病毒共有的一个宿主适应热点区域,该研究为病毒RdRP的调控机制研究及RdRP相关的宿主适应研究提供了重要线索。

  • 原文来源:https://news.bioon.com/article/6783198.html
相关报告
  • 《武汉病毒所/生物安全大科学中心揭示RNA病毒聚合酶具有一个与宿主适应相关的特征区域》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-01-13
    • RNA病毒编码的依赖RNA的RNA聚合酶(RNA-dependent RNA polymerase,简称RdRP)是一类独特的核酸聚合酶,在病毒基因组复制和转录过程中发挥核心作用,是抗病毒药物研究的热点靶标。病毒的RdRP由于可与其他功能域融合或与其他病毒蛋白共折叠,其整体结构多样性较高,但其催化核心区的三维结构则较为保守,因此RdRP兼具多样性和保守性。由于RNA病毒的宿主范围几乎囊括了所有细胞形式的生命体,在与不同宿主的共同进化过程中,RdRP作为RNA病毒最保守的蛋白,其与病毒的宿主适应性之间的关联并不清晰。 黄病毒包括乙型脑炎病毒(Japanese encephalitis virus,简称JEV)、登革病毒(dengue virus,简称DENV)、寨卡病毒、蜱传脑炎病毒(tick-borne encephalitis virus,简称TBEV)等多种人类致病病原,是一类分布广泛、种类繁多的单股正链RNA病毒,与丙型肝炎病毒和经典猪瘟病毒同属于黄病毒科。黄病毒大多由吸血节肢动物如蚊和蜱作为媒介传播,可引起人类脑炎或出血性疾病,对人类健康构成重大威胁。黄病毒的RdRP位于病毒编码的非结构蛋白NS5的羧基端,与氨基端的甲基转移酶(MTase)形成天然融合体。此前蚊传黄病毒的NS5已有多个三维结构报道,包括全长蛋白、MTase区和RdRP区的结构,而蜱传黄病毒NS5蛋白的全长结构及RdRP三维结构则未获解析。 中国科学院武汉病毒研究所龚鹏研究员团队长期从事病毒RdRP的催化与调控机制研究,该团队此前分别解析了JEV和DENV的NS5全长蛋白晶体结构(Lu and Gong, PLoS Pathog 2013; Wu et al., PLoS Pathog 2020),并与武汉病毒所张波研究员团队合作,系统性揭示了NS5的构象多样性和保守性以及MTase调控RdRP的分子机制(Li et al. PLoS Negl Trop Dis 2014; Wu, et al. J Virol 2015; Wu et al., PLoS Pathog 2020)。该团队近期解析了分辨率为1.9 埃的TBEV MTase晶体结构(PDB号7D6M,图1A)和分辨率为3.2埃的TBEV RdRP的晶体结构(PDB号7D6N,图1B),获得了首个蜱传黄病毒RdRP的三维结构信息。通过黄病毒RdRP的序列分析以及与结构已知的蚊传黄病毒RdRP的结构进行比较,发现在RdRP保守的催化基序(motif )B和C之间存在一个值得关注的区域(以下称B-C连接区)。该区域位于RdRP手掌区的底部且暴露于蛋白表面,且在黄病毒属的不同宿主分类中具有明显的宿主相关多样性(图1B及图2)。 该团队设计了TBEV和JEV病毒间B-C连接区的替换突变,在酶学水平证实突变对RdRP催化功能不构成本质影响(图3,A-B)。团队通过与武汉病毒所王汉中研究员/郑振华研究员团队和张波研究员团队合作,在细胞水平分别评测了突变对TBEV和JEV的影响,结果表明在两种病毒体系中突变后的病毒不能维持在细胞中的增殖(图3,C-D)。这些结果提示B-C连接区很可能参与了RdRP催化以外与病毒增殖相关的重要过程。通过对正链、负链和双链RNA病毒中的代表性RdRP的B-C连接区进行结构与序列的系统分析,在RNA病毒大家族中进一步发现该区域在结构和序列长度方面具有较高的多样性(图4),提示RdRP的B-C连接区很可能是RNA病毒共有的一个宿主适应热点区域,此项研究为病毒RdRP的调控机制研究及RdRP相关的宿主适应研究提供了重要线索。 此项研究主要受到国家重点研发计划项目“畜禽重要病原共感染与协同致病机制研究”(2018YFD0500100,项目负责人为中国农业科学院上海兽医研究所丁铲研究员)和NSFC面上项目(31670154; 32070185)的支持。博士研究生杨婕妤和博士后景旭平为论文的共同第一作者,主要完成了结构与酶学研究工作,龚鹏、郑振华和张波为共同通讯作者,王汉中/郑振华团队的实验师易文富、硕士研究生姚琛和张波团队的博士后李晓丹分别完成了TBEV和JEV病毒学研究工作,相关论文近期于Nucleic Acids Research(《核酸研究》)上在线发表,原文链接为: https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1250/6066638?guestAccessKey=c6d13ee0-287e-4d7b-97dc-01d9456423e7
  • 《施一研究组揭示新型冠状病毒的核心聚合酶复合物结构和生化特性》

    • 来源专题:中国科学院病毒学领域知识资源中心
    • 编译者:malili
    • 发布时间:2020-06-10
    • 与SARS-CoV相比,SARS-CoV-2具有更高的传播率和更低的致死率。大多数感染所导致的症状轻微,并且还有许多无症状感染病例。这些特性使SARS-CoV-2可以在人与人之间更迅速地传播,从而导致大流行。阐明SARS-CoV-2的感染和复制行为将为了解其独特的发病机理和宿主适应特性提供关键信息。 由于新病例的迅速增加,2019年冠状病毒病(COVID-19)很快引起了全球关注。目前人们认为新型冠状病毒的感染是从动物开始传播的,病原体为SARS-CoV-2。自2020年1月以来,该病毒已迅速传播到中国大部分地区和其他国家,形成全球大流行。截至目前(2020年6月1日),据约翰·霍普金斯大学发布的实时统计数据,全球累计新冠肺炎确诊病例超过630万例,死亡人数达37万。 SARS-CoV-2属于冠状病毒科(Coronaviridae),这是一组具有广泛宿主范围的正义RNA病毒。目前,已总共鉴定出七种感染人类的冠状病毒,其中SARS-CoV-2与2002-2003年出现的SARS-CoV在基因组序列上的相似性最高。两种病毒利用相同的宿主受体血管紧张素转换酶2(ACE2)进入细胞,并引起呼吸道症状,可能发展为严重的肺炎并导致死亡。 然而,与SARS-CoV相比,SARS-CoV-2具有更高的传播率和更低的致死率。大多数感染所导致的症状轻微,并且还有许多无症状感染病例。这些特性使SARS-CoV-2可以在人与人之间更迅速地传播,从而导致大流行。阐明SARS-CoV-2的感染和复制行为将为了解其独特的发病机理和宿主适应特性提供关键信息。 中国科学院微生物研究所施一研究组在Cell Reports在线发表题为“Structural and biochemical characterization of nsp12-nsp7-nsp8 core polymerase complex from COVID-19 virus”的研究论文,该研究描述了其核心聚合酶复合物的近原子分辨率结构,该复合物由nsp12催化亚基和nsp7-nsp8辅助因子组成。它的结构与SARS-CoV中相对应的结构高度类似,具有典型的RNA依赖的RNA聚合酶的保守基序,并暗示了辅助因子激活的机制。生化研究表明,与SARS-CoV病毒相比,SARS-CoV-2病毒核心聚合酶复合物的活性降低,单个亚基的热稳定性降低,提示其具有更好的人适应性特征。 冠状病毒的复制由其基因组中的开放阅读框1a(ORF1a)和ORF1ab编码的一组非结构蛋白(nsps)负责,这些蛋白最初翻译为多蛋白,然后进行蛋白水解、切割以及成熟。这些蛋白质组装成一个多亚基聚合酶复合体,以介导病毒基因组的转录和复制。其中,nsp12是具有RNA依赖的RNA聚合酶(RdRp)活性的催化亚基。虽然,nsp12本身能够以极低的效率进行聚合酶反应,而nsp7和nsp8辅助因子的存在会显著促进其聚合酶活性。因此,将nsp12-nsp7-nsp8亚复合体定义为介导冠状病毒RNA合成的最小核心组件。为了实现病毒基因组的完整转录和复制,还需要几个其他的nsp亚基组装成完整的转录复制复合体,其中包括nsp10,nsp13,nsp14和nsp16,但对于它们在RNA合成过程中是如何发挥具体功能的机制尚不清楚。 由于宿主的免疫选择,病毒的表面抗原蛋白易于发生“漂移”,与之相比,病毒聚合酶发生突变的概率较小,并且具有更高的进化稳定性,显示出作为高效抗病毒药物靶标的巨大前景。因此,了解SARS-CoV-2聚合酶复合物的结构和功能是开发新型治疗药物的必要前提。 在该研究中,研究人员描述了其核心聚合酶复合物的近原子分辨率结构,该复合物由nsp12催化亚基和nsp7-nsp8辅助因子组成。它的结构与SARS-CoV中相对应的结构高度类似,具有典型的RdRp保守基序,并暗示了辅助因子的激活机制。生化研究表明,与SARS-CoV病毒相比,SARS-CoV-2病毒核心聚合酶复合物的活性降低,单个亚基的热稳定性降低。 分子流行病学研究发现SARS-CoV和SARS-CoV-2可能都来源于蝙蝠。此前的流行病学动力学分析显示,SARS-CoV并没有完全适应果子狸和人这些宿主,而SARS-CoV-2却表现出在人群中高效的复制和传播,并且迄今为止还没找到中间动物宿主,提示这两种病毒在进化上存在较大差异。相关研究发现,人体体温要低于蝙蝠体温,在飞行时蝙蝠体温可高达40摄氏度以上。SARS-CoV-2病毒核心聚合酶复合物亚基的热稳定性降低,暗示SARS-CoV-2病毒经过长期进化,已经比SARS-CoV病毒具有更好的人适应性特征。 总之,该研究对SARS-CoV-2核心聚合酶复合物的结构和生化分析提高了我们对不同病毒RdRps合成RNA的机理的认识。此外,SARS-CoV-2和SARS-CoV聚合酶组分的不同生化特性为冠状病毒适应性进化提供了线索。 原文标题: Structural and biochemical characterization of nsp12-nsp7-nsp8 core polymerase complex from COVID-19 virus 原文链接:http://www.ebiotrade.com/newsf/2020-6/202065162708618.htm