《《JACS》:由一生二!二维材料领域重要进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-12-19
  • 中国科学院深圳先进技术研究院医工所纳米调控与生物力学研究中心在2D-2D二维超薄异质结研究方面获得新进展。相关成果以From one to two: In situ construction of an ultrathin 2D-2D closely-bonded heterojunction from a single-phase monolayer nanosheet(《由一生二——单相单层纳米片原位构建2D-2D超薄异质结》)为题发表在《美国化学会志》(Journal of the American Chemical Society)上。以色列理工博士邢政、西北大学副教授胡军与深圳先进院副研究员马明为文章共同第一作者,北京大学深圳研究生院教授杨世和与深圳先进院研究员李江宇为文章通讯作者。

    论文链接:https://pubs.acs.org/doi/abs/10.1021/jacs.9b08651

    发展至今,纳米材料的合成制备在其组分、尺寸和形貌上已经得到了精准地控制,各种纳米级的制备手段也被巧妙地开发出来,实现了诸如等离子体、金属纳米粒子、金属硫族化物量子点以及多组分的纳米颗粒等材料的制备与合成。同时,随着制备技术及手段的成熟化,使用湿法化学合成法便可实现纳米材料原子级尺度的制备,包括原子线和原子厚度的二维纳米片,如石墨烯、过渡金属二卤化物(TMD)和过渡金属氧化物等。各国研究人员通过湿化学方法进行了2D-2D超薄异质结构建的多种尝试,但迄今为止,2D-2D复合材料依然需要较为复杂的制备过程,及通常表现出较弱的界面结合状态,因此合理的设计思路和简单高效的制备手段是实现2D-2D超薄异质结构建的关键。

    斜方晶Bi2WO6和斜方晶Bi2O2S层状材料的晶体结构和从单层纳米片演变到2D-2D异质结纳米片过程的示意图,单层Bi2WO6纳米片和Bi2WO6-Bi2O2S 2D-2D异质结纳米片原位KPFM测量

    该研究开发了一种温和的化学合成方法,实现了Bi2O2S在单层Bi2WO6的原位生长,从而组装制备出超薄二维异质结纳米片。该二维异质结纳米片中的强界面结合使得其产生类似大分子的特征,也是导致电荷载流子分离效率极大提高的主要因素。相比于纯的Bi2WO6纳米片,超薄二维异质结纳米片实现了4倍以上的光电流响应,同时在光催化分解水体系统中产生了8倍以上的氢气。此外,该异质结可实现全可见光吸收,并促使光阳极起始电位向更负的方向偏移。该方法同时也期望被应用于其他含铋材料,包括Bi2O2CO3、铋氧卤化物(BiOI、BiOBr等)、含有【Bi2O2】氧硫族化合物等,对于开发先进的催化剂、电池及能源转换器件等具有重要意义。

相关报告
  • 《宁波材料所在二维磁性材料领域取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-30
    • 自二维磁性材料被成功制备以来,人们一直极度关注其磁性的调控。特别是对于双层CrI3而言,曾经有多篇文献(Nature 546, 270 (2017); Science 360, 1214 (2018); Science 360, 1218 (2018); Nat. Mater. 17, 406 (2018))报道其具有层间反铁磁序,并且在施加外场后,可以实现从反铁磁性到铁磁性的转变,并观察到巨大的隧穿磁阻。文献报道称,CrI3会在220K左右发生由温度诱导的结构相变,由单斜相(高温相)转变成六方相(低温相)。人们通常认为类石墨烯堆垛六方相是低温稳定结构,然而,研究团队的密度泛函理论计算发现该结构的双层CrI3具有稳定的层间铁磁序,并非实验上所发现的层间反铁磁序。因此,双层CrI3磁性相关的研究焦点之一在于确定其真实的材料结构及层间耦合机制。   近期,中国科学院宁波材料所钟志诚研究员团队和中国人民大学季威教授团队合作,基于第一性原理计算研究了双层CrI3中的层间磁耦合机制,发现堆垛方式可以调控层间耦合形式,从而诱导出不同的层间磁基态:其中低温相堆垛结构为层间铁磁序,而该工作预测的高温相堆垛结构为层间反铁磁序。文章中还指出,在以往的实验报道中,由于实验样品制备的原因,CrI3双层结构会受到BN等衬底的限制,在降温后并没有发生结构转变,而是保持了反铁磁态的高温相结构。该工作解决了最近一系列实验中双层CrI3层间反铁磁序来源这个悬而未决的问题,提出了一种在弱非共价耦合极限下的磁耦合机制,并为二维材料中利用堆垛的自由度调控磁性提供了可能。在审稿期间,该工作的预印本(arXiv:1806. 09274)已被引用十余次,部分理论预测最近分别被复旦大学吴施伟教授团队及瑞士巴塞尔大学(University of Basel)的P. Maletinsky教授团队的实验工作所证实(arXiv:1904.03577;Science 10.1126/science.aav6926 (2019))。   上述工作于2019年4月1日以“Stacking tunable interlayer magnetism in bilayer CrI3”为题发表在Phys. Rev. B(Phys. Rev. B 99, 144401 (2019))(论文链接: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.144401),并被编辑推荐为“Editors' Suggestion”。宁波材料所的博士后蒋沛恒和中国人民大学的博士生王聪为该论文的共同一作,宁波材料所的钟志诚研究员和中国人民大学教授季威为共同通讯作者。该工作得到了国家基金委、中国科学院、中国人民大学、中国博士后科学基金等的资助。该工作中的数值计算是在宁波材料所超算中心、中国人民大学高性能计算中心及上海超算中心进行。
  • 《深圳先进院二维材料通用制备技术研究获进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-26
    • 11 月 17 日,中国科学院深圳先进技术研究院先进材料中心研究员孙蓉团队在二维材料通用制备技术领域取得进展。相关论文“ A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets ”(《一种 高产率、高浓度剥离二维六方氮化硼纳米片的通用方法》 )在线发表在材料领域国际期刊 Materials Today ( 《今日材料》 ) 上。 六方氮化硼 (hBN) 是一种类石墨结构的无机超宽带隙电子材料。从 hBN 粉体剥离出的纳米片 (hBNNS) 具有超宽带隙、高导热、高化学、热稳定性等优异性能,在先进电子封装、高功率器件及 5G 通讯等领域具有重要的应用前景。目前 hBNNS 的剥离方法,包括超声剥离、微机械剥离、球磨剥离等方法普遍存在效率低、浓度小或易污染等缺点,影响了最终的应用效果。 该研究团队发现利用锂离子插层辅助的水热剥离法,在高压水热釜的临界反应条件下,通过选择与 hBN 剥离能相匹配的极性溶剂和高速搅拌,可以将微米级块体材料剥离成几个原子层厚的二维 hBNNS ,产率高达~ 55% ,同时 hBNNS 分散液浓度达到~ 4.13mg/mL 。通过 AFM 和拉曼表征,发现得到的 hBNNS 厚度在 10 个原子层以内。同时,研究团队也将这种剥离手段应用到其他常见二维材料纳米片的制备中,并成功得到厚度为 1~3nm 的石墨烯和二硫化钼纳米片。至此,研究团队成功实现了一种通用型、基于水热法剥离制备二维纳米材料的有效方法。文章第一作者为先进材料中心博士王宁,深圳先进院为论文第一单位。 论文得到科技部重大研究专项、国地联合先进电子封装材料工程实验室、中国科学院先导专项、广东省重点实验室、广东省产学研项目、 SIAT CAS-CUHK 高密度电子封装与器件实验室的支持。