《研究揭示拟南芥细胞器基因组重组与变异积累规律》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2022-10-31
  •       近日,中国农业科学院深圳农业基因组研究所绿色轻简超级稻遗传解析与分子育种创新团队研究揭示了MSH1基因参与介导拟南芥细胞器基因组重组与变异积累规律,为改造细胞器遗传物质,优化作物育种提供了理论支撑。相关研究成果发表在《植物杂志(The Plant Journal)》上。

      植物细胞内除细胞核遗传外,在细胞器(如线粒体和叶绿体)中也包含遗传物质。以开花植物为例,其线粒体基因组中包含大量的重复序列,即便在模式植物拟南芥中,这些重复序列仍然存在注释不正确与不完整的情况。

      为了更精准地理解这些重复序列的来源,探究植物细胞器基因组变异积累规律,研究人员选用拟南芥msh1突变体为研究材料,利用高精度长读长测序检测了突变体中细胞器基因组的结构变异,绘制了线粒体基因组重复序列介导重组精细图谱,并分析了线粒体与叶绿体基因组变异积累模式的差异。研究发现MSH1能够抑制重复序列之间非交换的异位重组,并推测MSH1表达量变化可能造成线粒体和叶绿体基因组结构和序列变异增加,而变异积累模式的差异可能是两套基因组进化轨迹差异的原因之一。该研究增进了人们对细胞器遗传变异模式的了解。

      该研究得到国家自然科学基金、深圳市科学技术创新委员会等项目的支持。(通讯员 马昕怡)

      原文链接:https://onlinelibrary.wiley.com/doi/10.1111/tpj.15976

  • 原文来源:https://www.caas.cn/xwzx/kyjz/323328.html
相关报告
  • 《EMBO J:新研究揭示细胞压力恢复期间的基因微调机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-12-04
    • 在最近一项研究中,科学家发现非编码RNA在调节压力恢复过程中具有微调基因表达的作用。 当细胞暴露于热或化学胁迫下时,就会形成称为细胞核应激体的细胞器。根据研究人员发表在《EMBO》杂志上的结果,当条件恢复正常时,细胞器会促进称为“内含子(intron)”的RNA片段的保留。 这很重要,因为内含子保留可调节基因表达的多种生物学功能,包括应激反应,细胞分裂,学习和记忆,防止受损DNA的积累甚至肿瘤生长。 北海道大学遗传医学研究所的分子生物学家Tetsuro Hirose专门研究非编码RNA,RNA是从DNA复制而未翻译成蛋白质的分子。 Hirose和他的同事们通过关闭长的非编码RNA,从而将其从细胞中去除,进而研究了核应激体的功能。 结果表明,去除核应激体导致细胞在压力恢复过程中内含子的保留受到很大程度上的抑制。进一步,作者了解了核应激体如何帮助细胞从压力中恢复。 他们发现了以下内容:42°C的热激过程会导致SFSF剪接因子脱磷酸化,从而导致特定内含子的去除和成熟RNA分子的产生。同时,去磷酸化的SRSF被掺入核应力体中。一旦细胞恢复到人体正常的37°C温度,核应激体就会吸收一种酶来使SRSF重新磷酸化,从而将内含子的保留迅速恢复到正常水平。 Tetsuro Hirose说:“核应激体可能通过在细胞从压力中恢复时迅速恢复适当的内含子RNA,从而保持信使RNA的水平来微调基因表达。”需要进一步的研究以揭示热应激后内含子保留的特定作用,并了解该过程的详细机制。
  • 《上海生科院揭示拟南芥DNA主动去甲基化调控新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:dingqian
    • 发布时间:2016-12-23
    • 12月9日,《细胞研究》(Cell Research)杂志在线发表了中国科学院上海生命科学研究院上海植物逆境生物学研究中心朱健康研究组题为A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation 的研究论文。该研究利用模式植物拟南芥揭示了HDP1和HDP2作为组蛋白乙酰转移酶IDM抗沉默复合体的新组件,在DNA主动去甲基化过程中发挥着重要作用,是近年来表观遗传领域的一项重要进展。 DNA甲基化是植物和哺乳动物中最主要的表观遗传修饰之一,它广泛参与转录抑制、转座子沉默、细胞发育与分化调节、基因组印迹、X染色体失活、重编程等过程,对维持物种的基因组稳定性、调控基因表达具有重要作用。DNA的甲基化过程和与之拮抗的去甲基化过程共同决定了基因组甲基化总水平及其分布模式。在植物中,DNA主动去甲基化过程是通过ROS1家族介导的碱基切除修复机制来实现的。朱健康研究组以往的研究发现,组蛋白乙酰化酶IDM1能识别多个表观遗传学标记,并对相应位点的组蛋白进行乙酰化,从而改变该特定区域染色体的结构,使得ROS1对该区域的DNA进行去甲基化(Qian et al., Science,2012)。随后研究又揭示甲基化CpG结合蛋白MBD7通过将IDM2、IDM3、 IDM1三个蛋白招募到甲基化DNA,形成抗沉默蛋白复合体,促使DNA去甲基化酶发挥功能,抑制DNA高度甲基化并阻止转录水平的基因沉默(Lang et al., Molecular Cell,2015)。然而,MBD7单独不能决定IDM1的靶标特异性,因为该复合物并不能指导ROS1去甲基化酶对所有IDM1靶位点进行去甲基化。因此,在IDM复合物中可能存在其他蛋白组分,该蛋白组分与MBD7共同决定着IDM复合物的靶标特异性。 在这项研究中,研究人员发现一对Harbinger转座子衍生蛋白(HDP蛋白)-HDP1和HDP2是IDM复合体的新成员。其中HDP1由Harbinger转座酶进化而来,HDP2是Harbinger转座子来源的DNA结合蛋白。这两个基因的功能缺失突变,不仅增强了外源转基因以及内源转座基因的沉默,同时也使基因组DNA甲基化水平升高。研究表明,HDP1在细胞核中与HDP2相互作用,并且对于IDM1组蛋白乙酰转移酶活性是必需的。此外,HDP2和MBD7靶向的基因组位点大部分重叠。该研究表明,HDP1-HDP作为IDM组蛋白乙酰转移酶复合物的新组分与其他蛋白共同决定了该复合物的靶向特异性,从而在DNA主动去甲基化及防止表观遗传沉默途径中发挥重要作用。