《胡萝卜素单体可作为生物基、可降解和共轭聚合物设计中的可行候选者》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2023-02-14
  • 由于固有的芳香性或共轭性,选择生物基化合物结合到共轭聚合物体系中,从而有机会创造具有特定位置可降解键的电子材料。大多数报道的可降解电子产品的生物基化合物都集中在直接使用小分子或现成的衍生物上。与小分子相比,聚合物具有较长的共轭长度、多种分子结构、可调的形态和定制的降解位点。其中,类胡萝卜素分子类似于聚乙炔,由于其高单分子电导,光诱导电荷转移,和已知的降解途径而引起了人们的极大兴趣。

    近日,多伦多大学Helen Tran团队利用由生物基β-胡萝卜素氧化降解得到的C10二醛通过与对苯二胺衍生物进行缩聚反应,合成了三种不同侧链的共轭聚亚胺。通过调节侧链分子长度进而调节所得聚合物的溶解性以方便加工。通过核磁共振(NMR)、凝胶渗透色谱(GPC)、红外光谱(IR)和紫外-可见(UV-vis)吸收光谱对聚合物进行了表征。此外,所得聚合物体系可通过酸水解得到C10二醛以及对苯二胺衍生物,表明类胡萝卜素单体可作为生物基、可降解和共轭聚合物设计中的可行候选者。

    / 可降解模型化合物和共轭聚亚胺的合成 /

    首先使用可通过生物基β-胡萝卜素氧化降解得到的C10二醛(图1A)合成了三种聚合物和一种模型化合物(图1B)。其中,C10二醛与苯胺所得模型化合物,用于优化合成条件。使用催化量的对甲苯磺酸与过量的CaCl2作为干燥剂,并以NMP作为溶剂得到了如图1D中所示的聚合物。其中p(CP-H)作为无侧链的对照聚合物,p(CP-methyl)包含两个甲基侧链,p(CP-hexyl)包含两个己基侧链。

    图1.生物基、可降解和共轭聚亚胺的合成。

    / 溶解度评估 /

    聚合物可溶性对于其表征和加工性至关重要。因此,作者评估了三种聚合物在不同溶剂中的溶解度(图2A)。发现p(CP-H)不溶于普通有机溶剂(例如CHCl3、THF和DMF),而p(CP-methyl)和p(CP-hexyl)均能溶于CHCl3和THF等溶剂,且目视观察p(CP- hexyl)溶解性优于p(CP- methyl)。进一步通过紫外-可见吸收光谱定量了其最大溶解度(图2B,C),结果表明对于p(CP-methyl),溶解度为34 ±1.73 mg/mL,而p(CP-hexyl)为67 ±0.29 mg/mL。

    图2.不同侧链长度聚合物的溶液加工性。

    / 分子量分析和光学表征 /

    由于p(CP-hexyl)的溶解度增加,通过NMR(图3 A,B)和GPC(表1和图3C)确定其分子量。如图3C所示,固体GPC曲线显示纯化后的呈现双峰,表明p(CP-hexyl)由高分子量和低分子量聚合物组成。使用制备型回收GPC分离得到了较高分子量的聚合物(图3C中的虚线),随后进NMR与和DOSY分析。端基分析表明,聚合度(DP)为11,对应分子量为4800 g/mol。此外,DOSY用于测定分子量(图3B)。此外,DOSY给出的分子量和聚合度(DP)与相对于聚苯乙烯标准的GPC测量值类似,分别为7700 g/mol和19(表1)。2种方法所带来的差异归因于:(1)基于使用的聚苯乙烯校准的GPC/DOSY高估,(2)通过端基分析低估,或(3)两者的组合。

    图3.p(CP-hexyl)的表征。

    表1. GPC测试结果。

    通过UV–vis光谱研究了单体、模型化合物和聚合物之间的共轭长度(图3D)对光电性能的影响。C10二醛单体在328和344nm处有两个不同的峰值。当在C10二醛的每一侧增加一个亚胺和苯基单元时(模型化合物),观察到λ.max变化为383 nm,且最为单峰。对于p(CP-hexyl),其中一个红移到470 nm,另一个变化为353 nm。有趣的是,p(CP -methyl)具有相同的吸收光谱,但其λmax略低,说明p(CP-methyl)相对于p(CP-hexyl)具有更少的重复单元。

    / 降解研究 /

    利用UV-vis光谱和1H NMR对模型化合物和聚合物的降解进行了初步研究。首先研究了充分裂解p(CP-hexyl)所需的酸浓度。在0.013 mg/mL p(CP -hexyl)的THF溶液中加入0.25 mM HCl后,开始降解,λmax的蓝移表明共轭程度降低(图4B)。随着酸的添加量增加,吸收光谱发生变化,出现两个峰值(328和344 nm),表明亚胺裂解后形成了C10二醛单体。进一步使用1H NMR监测聚合物结构随酸浓度增加的变化(图4C),结果表明,瞬时降解2 mg/mL的p(CP-hexyl)溶液至少需要270 mM的HCl。

    紫外线和阳光也被用作联乙炔聚合物的降解触发开关,提供了一种与酸水解相比需要更少干预的降解模式。因此,作者研究了人工阳光对p(CP-hexyl)酸水解速率的影响进行了评估(图4 D、E、F)。研究表明,在黑暗中保存的聚合物溶液相当稳定,在470 nm处的吸光度损失最小。暴露在人工阳光下的样本表现出一定的耐受性,但在45天的时间内,吸收能力仍然会下降。暴露在酸中的样品降解迅速,但与暴露在人工阳光下的样品相比,在黑暗中保存的样品降解速度较慢。因此得出结论,人工阳光确实可以影响酸水解的速率,有可能研究人工阳光作为降解这种聚合物的替代触发因素。

    图4. p(CP-hexyl)酸水解和人工光照降解的研究。

    / 总结 /

    在本工作中,作者利用来自生物基的C10二醛合成了一种模型化合物和三种共轭聚亚胺,并评估了烷基侧链对溶解度的影响。从methyl侧链到hexyl侧链所观察到的溶解度的改善表明,侧链工程是一种有前途的策略,可以调整性能以满足特定的应用需求,如导电性和环境兼容性。作者还系统地监测了该聚合物体系在酸性条件下的降解情况,并研究了人工阳光对降解速率的影响。作者表示,未来的工作将包括改进p(CP-hexyl)的合成,以生产更高分子量的聚合物,并评估其导电性,研究单体的回收。总的来说,这项工作为一种来自于自然界的新型完全可降解的共轭聚亚胺奠定了基础。

  • 原文来源:https://newenergy.in-en.com/html/newenergy-2418705.shtml
相关报告
  • 《高压均匀化对胡萝卜饮料贮藏过程中物理稳定性和类胡萝卜素降解动力学的影响》

    • 来源专题:食物与营养
    • 编译者:韩宇静
    • 发布时间:2019-06-01
    • 研究了高压均质(HPH)对胡萝卜饮料贮藏过程中物理稳定性和类胡萝卜素降解动力学的影响。采用不同的压力(60mpa、120mpa和180mpa)、通径(1和3通径)和入口温度(25℃和60℃)。结果表明,入口温度适中的HPH比HPH与热处理(HT)组合保存的颜色更好。根据ζ电位和相对浑浊度(turbidity, 简称Trel),胡萝卜饮料在贮藏过程中稳定性逐渐变差。。此外,HPH与HT的结合使贮藏期间的Trel(56.18 ~ 74.43%)低于25℃时的HPH(68.55 ~ 82.07%)。饮料在贮存过程中粘度增加,流变曲线符合Herschel-Bulkley模型。类胡萝卜素在贮藏过程中的降解动力学为一级反应。在中等入口温度(180mpa、1次和60摄氏度)的辅助下,与其他处理相比,HPH能更好地保存类胡萝卜素(第28天为41.70μg/ml)。 @font-face { font-family: "Cambria Math"; }@font-face { font-family: DengXian; }@font-face { font-family: "@等线"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; text-align: justify; font-size: 10.5pt; font-family: DengXian; }.MsoChpDefault { font-family: DengXian; }div.WordSection1 { }
  • 《2019-2024年全球生物基聚合物生产能力和趋势》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-09-10
    • 2020年1月,德国Nova研究所发布最新市场和趋势报告《生物基构件和聚合物——2019-2024年全球能力、生产和趋势》,报告统计了2019年所有生物基聚合物的产能和产量数据,并预测至2024年的生产情况。 1、总体情况 2018年全球生物基聚合物产量350万吨,2019年产量380万吨,比2018年增加约3%,占化石基聚合物产量的1%,预计到2024年生物基聚合物的产能和产量将继续增长,复合年增长率约为3%,与化石基聚合物和塑料的预期增长率几乎相同。 2018-2019年产能的增加主要是由于欧洲聚对苯二甲酸丁二酯(poly(butylene adipate-co-terephthalate),PBAT)生产的扩大、全球环氧树脂的生产以及欧洲淀粉高分子化合物的生产。2019年首次报道了聚丁二酸丁二酯和共聚物(polybutylene succinate,PBS)、生物基聚乙烯(polyethylene,PE)和聚丙烯(polypropylene,PP)的产量和市场容量的增加。预计到2024年,环氧树脂和PP使用将有显著增长,聚羟基链烷酸酯(polyhydroxyalkanoates,PHA)的市场容量也将增加。 2、原材料 考虑到生物基聚合物的未来稳定增长,生物质原料是需要考虑的重要因素。用于生物基聚合物生产的主要原料是生物副产物(46%),特别是生物柴油生产副产物甘油,可用于环氧树脂生产。37%生物质来自淀粉和糖,8%由纤维素(主要用于醋酸纤维素)构成,9%来自可食用和不可食用的植物油(如蓖麻油)。目前,360万吨生物基聚合物(全部或部分生物基)仅有160万吨是聚合物的实际生物基部分(43%)。 3、政策环境 原油价格降低和政治支持力度不足给生物基聚合物市场带来挑战。生物基聚合物的低碳和可降解这两个主要优点尚未在政治上得到有效支持。如果将生物基聚合物以与生物燃料类似的方式进行推广,预期将有10~20%的年增长率。2019年欧盟通过了一次性塑料禁令,将于2020年夏季生效,生物降解材料和生物基材料未被认为可以免除禁令,只有天然聚合物才可豁免。根据目前REACH法规中对微塑料的限制,PHB可免于微塑料禁令。2018年和2019年生物基聚合物最重要的市场驱动力是提供环保解决方案的品牌,以及寻求石化产品替代品的重要消费者。 4、生物基构件 2019年生物基构件的整体生产能力增长约8%,达到230,000吨/年,增加主要是由于环氧氯丙烷(epichlorohydrin,ECH)和新兴的生物基石脑油的生产。预计到2024年生物基构件的复合年增长率将达到5%,其中1,4-丁二醇(1,4-butanediol,1,4-BDO)、不同的呋喃衍生物、L-乳酸、石脑油和1,3丙二醇(1,3-propanediol,1,3-PDO)是主要驱动力。 5、区域分布 亚洲成为2019年全球最大的生物基产品生产区域,产量占比45%,其次是欧洲(26%)、北美(18%)和南美(10%)。在未来五年,欧洲的份额将上升到31%,其他地区的份额将有所下降。欧洲2019-2024年的复合年增长率预计将达到7%,主要源自PE、PP、PA、PHA、PEF和新兴的酪蛋白聚合物(仅在欧洲生产)的生产能力增加。 6、细分市场 如今,生物基聚合物几乎可用于所有细分领域,但每种聚合物的应用却大不相同。2018年消费品在实际生产的生物基聚合物中占最大份额,而2019年纺织品包括纺织、无纺布和纤维——主要是聚对苯二甲酸丙二醇酯(polytrimethylene terephthalate,PTT)和醋酸纤维素(cellulose acetate,CA)——的比例最高,为20%,其次是汽车和运输占比15%,建筑材料占13%(主要是环氧树脂、PA和PUR),消费品占13%(主要是环氧树脂、PA和PUR),软包装占13%(主要是含淀粉的高分子化合物、PBAT和PE),硬包装11%(主要是PET、PLA和PBAT),电气和电子、农艺和园艺等其他市场份额不到10%。                     吴晓燕 编译自http://news.bio-based.eu/the-global-bio-based-polymer-market-2019-a-revised-view-on-a-turbulent-and-growing-market/                             原文标题:The global bio-based polymer market 2019 – A revised view on a turbulent and growing market