《钾离子电池电解质界面膜研究获突破》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-07-16
  • 河北科技大学材料科学与工程学院教授王波团队与北京航空航天大学空间与环境学院教授王伟团队等单位合作,6月份成功制备一种具有生成稳定合理电解质界面膜的柔性无定型碳纤维,将电解质界面膜的厚度控制在了2—4纳米范围内。相关研究成果近日以《高倍率钾离子电池合理固体电解质界面膜的形成》为题在线发表于《纳米能源》。

      近年来,碳负极材料因价格低廉且具高的电子电导率等优点,成为了钾离子电池领域的研究热点。但是过多固体电解质界面膜的形成消耗了大量的电解液并导致较高的不可逆容量是碳材料科学研究面临的重要挑战之一。

      河北科技大学与北京航空航天大学等单位合作提出了构建均匀稳定电解质界面膜的新思路。通过原材料的选择以及工艺调控该团队制备出了一种表面具有二氧化硅和氧化镁纳米粒子的磷—硫元素共掺杂柔性碳纤维薄膜。由于二氧化硅和氧化镁纳米颗粒的均匀分布,形成了厚度为2—4 纳米的固体电解质界面膜。这种固体电解质界面膜不仅可以保护电解质免于连续分解,而且还可以防止电子渗透,并同时实现钾离子顺畅的嵌入/脱出。另外,磷—硫元素共掺杂可以增强钾离子的吸附能力,同时提高电导率。

      该项研究不仅确认了均匀稳定电解质界面膜的形成机理,同时为开发高倍率储能和低成本的柔性电极提供了新思路。

相关报告
  • 《【Nature Communications】KETI突破固态电池枝晶难题》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2025-07-11
    • 韩国电子技术研究院(KETI)联合首尔大学、中央大学研究团队于2025年7月7日宣布,在固态电池领域取得重大突破。该团队通过将银(Ag)掺入固态电解质,首次充电时诱导银离子自发形成纳米颗粒,成功实现锂金属均匀沉积。相关成果发表于《Nature Communications》7月刊。 核心研究人员: KETI首席研究员Cho Woo-seok 高级研究员Choi Seung-ho 中央大学教授Park Hae-sun 技术突破点: 创新机制:通过银纳米颗粒自形成技术,有效抑制枝晶生长(传统固态电池因锂沉积不均导致枝晶刺穿隔膜) 性能提升:在7.0mAh/cm2高容量下保持稳定充放电,软包电池能量密度超1000Wh/L 工艺优势:无需额外保护层或复杂工艺,可直接整合现有生产线 应用前景: 无负极全固态电池能量密度理论提升30%以上 解决商业化最大障碍——电解质与锂反应不均问题 已获韩国产业通商资源部"炼金术项目"支持  
  • 《更高效的固态电解质 镁离子电池技术或有突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-01
    • 虽然我们隔三差五就能听到有关“电池技术突破”的新闻,但锂离子电池依然是当前使用最广、综合表现最佳的选择。 不过最近,麻省理工博客里实验室和阿贡国家实验室的一支研究团队,已经开发出了一种新型固态材料。 它似乎是镁离子的一种绝佳导体、有望用于打造更安全和高效的电池。 锂电池被用于从手机到电动汽车等各个领域,虽然这种金属材料服务得很好,但在效率和价格上仍有很大的改进空间。 研究人员为镁离子电池找到了一种高效的固态电解质 通过在核磁共振实验室进行的实验,研究人员们证明了新材料是镁离子的一种高效导体(via:阿贡国家实验室) 作为对比,镁元素的能量密度更高、在自然界中的储量也更多, 因而很有希望拿来打造更加便宜和更容易生产的电池。然而要在电池中使用镁这种金属的话,还得迈过电解质这个绊脚石。 其负责在电池的阴极和阳极之间传递电荷, 虽然近期丰田和 KIT 都专注于研发更好的液体电解质,但它们都有腐蚀电池的其它部位的倾向。 于是我们转念一想,为什么不尝试其它类型的电解质呢? 论文合著者 Gerbrand Ceder 表示:镁基电池是一项全新的技术,它没有任何好用的液体电解质。所以我们想到,为什么不换用一种固态的电解质呢? 好消息是, 他们真的研制出了一种名叫“硒化钪镁尖晶石”(magnesium scandium selenide spinel)的新材料 。这种固态电解质允许镁离子轻松穿透,且其导电性甚至媲美某些锂电池中所使用的固态电解质。 最初的理论研究已经预测了不错的结果, 为了验证,研究团队对其进行了核磁共振(NMR)光谱实验。 该仪器能够检测镁(或锂)离子是否穿透物质,然而由于新材料有些复杂且缺少参考,导致他们难以解释数据结果。 研究一作 Pieremanuele Canepa 表示:除了传统的电化学表征之外,这些发现只有结合多种技术方法才能说得通(阿贡实验室的固态核磁共振和同步测量)。 即便如此,在将这种镁基新材料用于打造真实的电池之前,还有一些问题需要解决。比如当前仍有少量的电子泄露,需要改进电子迁移率。不过固态电池在商用之后,其安全性还是较传统液体电解质电池高出不少。 有关这项研究的详情,已经发表在近日出版的《自然通讯》( Nature Communications )期刊上。