《钾离子电池电解质界面膜研究获突破》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-07-16
  • 河北科技大学材料科学与工程学院教授王波团队与北京航空航天大学空间与环境学院教授王伟团队等单位合作,6月份成功制备一种具有生成稳定合理电解质界面膜的柔性无定型碳纤维,将电解质界面膜的厚度控制在了2—4纳米范围内。相关研究成果近日以《高倍率钾离子电池合理固体电解质界面膜的形成》为题在线发表于《纳米能源》。

      近年来,碳负极材料因价格低廉且具高的电子电导率等优点,成为了钾离子电池领域的研究热点。但是过多固体电解质界面膜的形成消耗了大量的电解液并导致较高的不可逆容量是碳材料科学研究面临的重要挑战之一。

      河北科技大学与北京航空航天大学等单位合作提出了构建均匀稳定电解质界面膜的新思路。通过原材料的选择以及工艺调控该团队制备出了一种表面具有二氧化硅和氧化镁纳米粒子的磷—硫元素共掺杂柔性碳纤维薄膜。由于二氧化硅和氧化镁纳米颗粒的均匀分布,形成了厚度为2—4 纳米的固体电解质界面膜。这种固体电解质界面膜不仅可以保护电解质免于连续分解,而且还可以防止电子渗透,并同时实现钾离子顺畅的嵌入/脱出。另外,磷—硫元素共掺杂可以增强钾离子的吸附能力,同时提高电导率。

      该项研究不仅确认了均匀稳定电解质界面膜的形成机理,同时为开发高倍率储能和低成本的柔性电极提供了新思路。

相关报告
  • 《更高效的固态电解质 镁离子电池技术或有突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-01
    • 虽然我们隔三差五就能听到有关“电池技术突破”的新闻,但锂离子电池依然是当前使用最广、综合表现最佳的选择。 不过最近,麻省理工博客里实验室和阿贡国家实验室的一支研究团队,已经开发出了一种新型固态材料。 它似乎是镁离子的一种绝佳导体、有望用于打造更安全和高效的电池。 锂电池被用于从手机到电动汽车等各个领域,虽然这种金属材料服务得很好,但在效率和价格上仍有很大的改进空间。 研究人员为镁离子电池找到了一种高效的固态电解质 通过在核磁共振实验室进行的实验,研究人员们证明了新材料是镁离子的一种高效导体(via:阿贡国家实验室) 作为对比,镁元素的能量密度更高、在自然界中的储量也更多, 因而很有希望拿来打造更加便宜和更容易生产的电池。然而要在电池中使用镁这种金属的话,还得迈过电解质这个绊脚石。 其负责在电池的阴极和阳极之间传递电荷, 虽然近期丰田和 KIT 都专注于研发更好的液体电解质,但它们都有腐蚀电池的其它部位的倾向。 于是我们转念一想,为什么不尝试其它类型的电解质呢? 论文合著者 Gerbrand Ceder 表示:镁基电池是一项全新的技术,它没有任何好用的液体电解质。所以我们想到,为什么不换用一种固态的电解质呢? 好消息是, 他们真的研制出了一种名叫“硒化钪镁尖晶石”(magnesium scandium selenide spinel)的新材料 。这种固态电解质允许镁离子轻松穿透,且其导电性甚至媲美某些锂电池中所使用的固态电解质。 最初的理论研究已经预测了不错的结果, 为了验证,研究团队对其进行了核磁共振(NMR)光谱实验。 该仪器能够检测镁(或锂)离子是否穿透物质,然而由于新材料有些复杂且缺少参考,导致他们难以解释数据结果。 研究一作 Pieremanuele Canepa 表示:除了传统的电化学表征之外,这些发现只有结合多种技术方法才能说得通(阿贡实验室的固态核磁共振和同步测量)。 即便如此,在将这种镁基新材料用于打造真实的电池之前,还有一些问题需要解决。比如当前仍有少量的电子泄露,需要改进电子迁移率。不过固态电池在商用之后,其安全性还是较传统液体电解质电池高出不少。 有关这项研究的详情,已经发表在近日出版的《自然通讯》( Nature Communications )期刊上。
  • 《【Advanced Powder Materials】研究固体电解质在硅颗粒中的界面失效机制》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2024-07-15
    • 锂离子电池以其自放电率低、循环寿命长等优点在新能源汽车中得到广泛应用。目前商用锂离子电池的负极材料主要采用石墨,理论容量仅为372 mAh g -1 ,已逐渐不能满足日益增长的能量密度需求。 硅的理论容量高达 4,200 mAh g-1,因此被广泛研究。然而,硅在锂化和脱锂过程中会产生高达 300% 的体积变化,随之而来的机械退化和容量损失阻碍了其应用。 为了减少机械变形造成的不利影响,人们对硅结构进行了深入研究,并有效改善了循环性能。然而,硅基储能材料的长期发展不仅需要稳定的电极,还需要电极与电解质之间稳定的相位。 在传统锂离子电池中广泛使用的有机电解质会在阳极表面还原形成一层薄膜,称为固体电解质相(SEI)。 不幸的是,硅体积的急剧变化会导致应力的积累和 SEI 的破坏,随后 SEI 会在暴露的阳极表面再生,从而大大增加不可逆的锂和电解质消耗,并导致容量下降。因此,稳定硅材料上 SEI 的机械性能尤为重要。 为此,中国科学技术大学谭鹏领导的先进电源研究小组从电极材料特性、SEI 几何特性和电池工作条件三个方面对 SEI 的机械稳定性进行了建模研究。相关研究成果已发表在 Advanced Powder Materials 杂志上。 建模基于连续介质力学模型,并与电化学传质过程相结合。 研究小组通过建立单个电极颗粒模型,定量分析了三个因素对 SEI 稳定性和电池容量利用率的影响。 他们发现,为了提高 SEI 的稳定性,在设计电极材料时应尽量使用粒径较小的球形硅子。就 SEI 的几何形状而言,人工构建具有均匀结构的 SEI 尤为重要,而就电池操作而言,高倍率会带来更高的容量利用率,但不利于 SEI 的稳定性。这些发现证明了 SEI 的高稳定性设计和运行策略,并将指导具有高循环稳定性的硅基储能电池的开发。 原文链接: Junjie Ding et al, Investigating the failure mechanism of solid electrolyte interphase in silicon particles from an electrochemical-mechanical coupling perspective, Advanced Powder Materials (2024). DOI: 10.1016/j.apmate.2024.100200