《双金属2D-MOF在高级电催化析氧中的直接应用》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2021-01-05
  • 发展低能耗、低成本的非贵金属析氧反应(OER)催化剂,是水裂解制氢和扩大其应用的迫切需要。二维金属有机框架及其衍生物由于其独特的结构特点,被广泛认为是极有前途的OER电催化剂。本文通过优化Ni与Co的摩尔比,合成了基于2-甲基咪唑的双金属2D-MOF,并通过磷酸化或氧化得到了其衍生物。OER测量证明原财政部结构5%的镍/ Co摩尔比率显示了出色的活动有310 mV过电压马(?)电流密度的10厘米−2在1 M OER的KOH解决方案,以及一个相当良好的电化学稳定性而不是氧化或磷衍生品。本工作介绍了一种简便的制备双金属咪唑基2D-MOF的方法,无需转化即可直接应用于能量转换领域,为2D-MOF的广泛应用打开了新的窗口,提高了水裂解制氢效率。

相关报告
  • 《德累斯顿工业大学:二维共轭金属有机框架电催化》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-01-26
    • 电催化剂是可再生能源转换体系的核心部件,促进关键电化学反应,从而提高能源转换效率,比如电解水中的氧气和氢气析出,二氧化碳还原,燃料电池中的氧还原反应等。金属有机框架(MOFs)材料具有高比表面积和孔隙率,丰富的金属中心,可调控的组成/结构等优点,成功应用于气体吸附,传感器,电磁,催化等领域。在电催化中,MOFs材料成为构建高效催化体系,同时深入开展催化机理研究的最佳选择。但传统MOF的绝缘体性质严重制约了其电催化应用。近年来发展的二维共轭金属有机框架(2D c-MOFs)材料,结构独特(高平面共轭以及弱层间堆积),突破了传统MOFs在电催化中的阻碍,呈现出高导电性,在构建高效原子级催化剂和机理研究中取得进展。鉴于此,德累斯顿工业大学冯新亮、董人豪团队受邀在ACS NANO上发表题为“Two-Dimensional Conjugated Metal−Organic Frameworks for Electrocatalysis: Opportunities and Challenges”的综述文章,介绍了二维共轭金属有机框架材料(2D c-MOFs)在电催化中的发展,涵盖2D c-MOFs化学结构和合成方法,电催化功能设计及重要电催化应用进展。
  • 《上海硅酸盐所在压电催化研究中取得进展》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-04-11
    • 压电材料具有非中心对称性的结构,在外加机械力的作用下可诱导表面电荷的不对称分布。表面富集的非平衡电荷能够引发电化学反应,在温和条件下可实现水和氧气分子的活化以及活性氧物种的产生,从而可实现能源小分子(O2、H2O、CH4等)转化,被认为是实现绿色化学合成的重要潜在反应途径。 近期,中国科学院上海硅酸盐研究所能源和环境催化材料课题组通过合理的催化反应体系设计,制备出一系列具有压电催化效应的半导体材料,开展了压电催化析氢、压电催化生成双氧水、压电催化转化甲烷等方面的研究工作,揭示了能源小分子在催化剂表面的活化机制和转化反应机理。该研究对推动利用自然界和人造震动能将含能小分子转化为绿色能源具有重要意义。 在外加超声作用下,超薄的MoS2内部能产生压电场。随着超声能量的增强,材料内部产生的内建电场作用增强,载流子分离效率提高,因此,当超声能量增加时,MoS2产氢效率大幅提升。对MoS2进行电极性及表面极化修饰,不仅增加了材料表面的活性位点,使内建电场分离的电子与H+在同一位点累积,进一步促进了产氢效率的提升,还能构建空穴捕获位点,促进了载流子的分离,实现了约1250μmol·g-1·h-1的高产氢效率。这种压电效应与催化作用耦合的思想,为半导体催化以及纳米能量转换器件提供了新的解决思路,有望拓宽压电材料在催化领域的应用。相关研究成果发表于Journal of Materials Chemistry A 6 (2018) 11909‐11915。 利用压电力显微技术表征了BiOCl、C3N4等材料的压电响应,并通过相关金属离子氧化还原反应证实了这些材料的压电催化活性位点。在空气气氛下,超声BiOCl或C3N4的纯水悬浮液可以分别得到28μmol/h和34μmol/h的H2O2产率,高于相应的光催化过程所得H2O2产率,表明这些材料在压电场下对氧气分子具有更强的催化效应,压电催化反应的效率具有进一步应用发展的潜力。相关研究成果分别发表于ChemSusChem 11 (2018) 527‐531和Journal of Materials Chemistry A 6 (2018) 8366‐8373。 利用羟基磷酸钙HAp的压电催化效应,通过甲烷氧化与甲醇偶联的串联过程实现了甲烷向低碳醇的转化。通过探针分子的吸附以及Au3+还原反应,验证了超声振荡下HAp的作用机制为压电催化而非超声催化。在超声振荡下,HAp的表面感应电荷能够分别作为表面阴极/阳极引发电化学反应,实现甲烷、氧气和水分子的活化,其中,氧气和水分子活化后产生的羟基自由基可进攻甲烷的C-H键使其转化为低碳醇。HAp上甲烷的压电催化转化能够获得甲醇、乙醇、异丙醇产物,产率分别为84.4、43.2、9.6μmolg-1h-1,且没有一氧化碳或二氧化碳的生成。该研究通过碳碳偶联延长了甲烷转化的反应路径,缓解了甲醇发生过度氧化的情况,同时提出了一个基于压电催化的C1化合物升级思路。相关研究成果发表于Nano Energy, 79(2021) 105449‐105459。 研究工作得到国家自然科学基金等的支持。