《宁波材料所成功研制出吸光率高达99%的超黑吸光涂层》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-04-23
  • 中国科学院宁波材料技术与工程研究所先进涂层与增材制造技术团队经过多年研究,成功开发出一种超黑涂层。经第三方权威机构检测,200nm-25μm波段吸光率高达99%。该涂层可在多种基材表面沉积,同时可实现大面积批量制备,而且可适应高温、低温、真空、液体等极端服役环境,具有极广阔的应用前景。

      超黑涂层现有或潜在的应用领域十分广泛。例如,空间红外天文望远镜处在工作状态时,其内部元器件会因为发热而产生微量红外线,从而干扰仪器对于空间目标波段的观测。为此,有必要吸收仪器本身产生的光学干扰,以提高望远镜对于目标信号的灵敏度。当然,对于杂质光源的屏蔽不仅仅是天文望远镜的需求,所有精密的光学仪器,都需要屏蔽无关的光学干扰,如拉曼、紫外、红外光谱仪等。光学或微波暗室需要做到真正的“暗”,才可以保证内部仪器工作不受干扰。同时,军事上也需要隐身技术,如为军事设备或人员提供各种必要的伪装等。除此之外,太阳能电池也需要增强对于特定光源的吸收,以提高能量转换效率。

      吸光材料的研究多关注于超黑物质。当光线与物体发生作用时,部分能量被物体吸收,部分未被吸收的能量被反射、散射或透射,反射与散射部分影响我们所观察物体的颜色。当所有可见光都被物体吸收时,则物体表现为黑色,所以物质越黑则吸光范围越广。相关研究的难点不仅在于超黑物质本身的研制,同时也在于超黑涂层的制备技术开发,因为只有把超黑物质制备为涂层,才能实现其长效工作。而且应用场景对基材的需求多种多样,涂层服役工况条件各异,导致了超黑涂层研制困难重重。

      经过多年研究,中国科学院宁波材料所先进涂层与增材制造技术团队的科研人员成功研制出一种新型超黑物质,并开发出一种新型超黑涂层。该涂层可以沉积在几乎所有的材质基体表面,包括柔性基体,尺寸大小和形状不受限制,并且可以实现高效、大面积的可控制备,可应用于超低温、高温、真空、液体等极端环境。经第三方权威机构测试,其在200nm-25μm波段吸光率高达99%。同时,该超黑涂层所用材料超轻,不会增加仪器自身重量。

      除了空间探测、精密仪器、超黑暗室、光伏组件之外,该涂层有望应用于所有需要光学信号调控的领域,包括卫星光学定位、数码摄像机、建筑隔热保温、视觉艺术设计等领域。未来,更多潜在的应用有望继续被开发出来,这将是一个发展空间广阔的蓝海。

  • 原文来源:http://www.nimte.ac.cn/news/progress/201904/t20190419_5277827.html
相关报告
  • 《宁波材料所开发出超黑光吸收涂层》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-08-31
    • 中国科学院宁波材料技术与工程研究所科研人员开发出一种超黑高稳定性的光吸收涂层技术,可应用于抑制光学器件中杂散光的干扰、提高太阳能光热转化效率等领域。   该涂层采用物理气相沉积技术,可在金属、陶瓷、高分子等绝大多数常用材料表面涂覆,甚至可以在柔性高分子薄膜表面涂覆,涂层结合力高,涂层的物理化学性能稳定、硬度高。   该涂层技术由中国科学院宁波材料所表面防护课题组研发完成,涂层为TiAlN三元陶瓷,在波长200nm到2500nm范围内的光吸收系数超过95%,覆盖近红外、可见光以及紫外,在现有陶瓷光吸收涂层中波长范围最宽、吸收率最高,但制备方法却非常简单。该涂层具有精巧的纳米结构,底层为层状结构,有利于提高其在各种基体材料上的附着力;中部为柱状结构,柱状界面可多次反射吸收光的能量;顶部为锥形结构,有利于入射光的导入。由于该涂层制备成本低,物理化学性能非常稳定,未来可在光学仪器杂散光控制、能量转换等领域广泛应用。   该工作成果发表在Journal of Materials Chemistry C, 2018,6, 8646-8662,Solar Energy, 2016, 138, 1–9。该技术已经申报发明专利2项(CN201210063873.8,DD180138I)。
  • 《宁波材料所合成出新颖二维MXene材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 发布时间:2017-04-19
    • 二维材料因其高比表面积,独特的电子结构及物理化学性质而引起人们的广泛关注。作为研究最为广泛的二维材料,石墨烯因其超高的力学强度、优异的电导率及热导率,在电化学储能,透明电极材料,及纳米复合材料等领域展现出广泛的应用前景,但本征的零带隙及单一的化学组成限制了其在场效应晶体管等领域的应用。二元及三元二维材料,如金属氧化物、层状金属硫族化合物,六方氮化硼,层状氢氧化物等体系的研究日益受到关注。二维层状过渡金属碳化物纳米片(MXenes)材料则是近年来发现的一类新型二维材料,由美国Drexel大学Michel Barsoum在此领域做了大量开拓性研究,目前该实验室已相继获得Ti3C2Tz, Ti2CTz, Ta4C3Tz, TiNbCTz, (V0.5,Cr0.5)3C2Tz, Ti3CNTz, Nb2CTz,V2CTz, Nb4C3Tz, Mo2TiC2Tz, Mo2Ti2C3Tz, Cr2TiC2Tz, , Mo2CTz, Ti4N3Tz等MXenes结构。MXenes具有高比表面积、良好的导电性和亲水性,理论预测这类材料具有高弹性模量及高载流子迁移率,在导电材料及功能增强复合材料等方面有良好的应用前景。前期研究发现多种阳离子能够自发地插入到MXenes材料层间,因此在储能领域也有良好的应用前景。如已有的研究报道,Ti3C2Tz、Ti2CTz、V2CTz、Nb2CTz等可作为锂离子电池和超级电容器的电极材料,它们具有较高的比容量(可达410 mAh/g @ 1 C)和体积比电容(可达900F/cm3)以及良好的充放电循环稳定性(Science, 2013, 341, 1502-1505;Nature 2014, 516, 78-81)。因此,MXenes被认为极具发展潜力的新一代二维纳米功能材料。   正因为此,如何抢先合成出具有丰富d电子结构的过渡金属碳化物材料已成为全世界关注的焦点。目前,MXenes的制备主要是通过HF酸,NH4HF2溶液,LiF及HCl混合溶液及低共熔混合盐介质中对A位为Al的MAX相材料(为一超过70组员的材料体系)中的Al原子选择性刻蚀而得到。由于过渡金属Zr及Hf难以形成A位为Al的MAX相,因此,截止目前,关于Zr系及Hf 系的MXenes材料仍未见报道。中国科学院宁波材料所特种纤维与核能材料工程实验室采用原位反应放电等离子烧结法(SPS)获得的高纯新型Zr3Al3C5层状碳化物作为前驱体,以HF酸为蚀刻剂,选择性剥离键合较弱、易于水解的Al-C结构单元,首次获得Zr系二维MXenes材料。该工作已发表在国际期刊《Angewandte Chemie-International Edition》(128, 5092-5097, 2016)。   相比于Zr系材料,Hf系层状碳化物更难获得单一的物相,通常获得的是Hf3Al3C5、Hf3Al4C6和Hf2Al4C5三元化合物的混合相,并且由于较强的亚层间界面结合,我们发现直接以三元Hf-Al-C复合相为前驱体难以通过选择性刻蚀法获得Hf系二维材料,所得到的剥离产物主要为立方相HfC。已有的研究表明,基于这些三元相的单相固溶体相对更易获得,并且有助于改善相纯度。此外,考虑到Hf-C与Al-C片层间较强的相互作用,为进一步实现有效剥离,对单胞内的Hf-C及Al-C亚层间的界面进行调控,以弱化Hf-C与Al-C片层间的界面结合非常重要。我们基于固溶法调谐单胞内亚层的思路,在Al位引入少量Si,采用SPS方法合成了新型Hf2[Al(Si)]4C5和Hf3[Al(Si)]4C6固溶体材料,以此固溶体为前驱体,以HF酸为蚀刻剂,实现了对Al(Si)-C结构单元的选择性剥离,首次获得了Hf系二维MXenes材料。借助结合能和原子电荷计算分析,阐明了Si掺杂促进氢氟酸剥离过程的微观机制,由于Si比Al多一个价电子,掺杂替代Al原子之后,能有效减弱Hf原子层和剥离的片层Al(Si)4C4之间的界面结合,对应结合能的数值从8.60 eV直接降低到4.05 eV,因而Si的引入实现了对单胞内HfC及Al(Si)-C片层界面的有效调谐,显著弱化了界面结合,进而实现了剥离。Hf系新颖二维碳化物材料在储能、吸波和光电器件上有着潜在的应用。该实验室发现其具有优良的电化学循环储能特性,在锂电池和钠电池测试中在电流密度为200 mAg-1 循环200次后分别得到体积比容量为1567 mAh cm-3 and 504 mAh cm-3. 高体积比容量材料有望应用于发可应用于空间飞行器、移动装备等小型化供能系统中。该新型Hf系MXene二维材料工作近期已经被国际期刊《ACS Nano》(DOI: 10.1021/acsnano.7b00030)接收发表。   另外,该实验室与香港城市大学支春义教授合作,利用常规水热处理方法获得了量子点结构的Ti3C2型MXene材料。该量子点材料具有很好的荧光特性和生物相容性,有望在无稀土发光显示材料和生物标记及光热治疗等领域得到广泛应用。该工作也将在2017年的《Advanced Materials》(DOI: 10.1002/adma.201604847)期刊上出版。   目前国际上MXene材料研究方兴未艾,正逐步成为继石墨烯、二硫化钼、黑鳞等二维材料之后新的研究热点。中国科学家在Zr系和Hf系对应MXene材料合成上的突破将有力扩展人们对于二维材料认识的视野,也对于纳米能源器件和光电器件研究提供全新的素材。   以上工作得到国家自然科学基金委(21671195,11604346,51502310,21577144,91426304)和中国科学院核能材料创新团队的支持。 图 Hf系MXene材料合成示意图和原子力显微镜形貌图。   目前元素周期表过渡族金属区域业已合成出对应的MXene材料,其中Zr系和Hf系由中国科学院合成