《Cell | 大规模并行体内 Perturb-seq 技术揭示大脑皮层发育过程中细胞类型特异性转录网络》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-05-26
  • 2024年5月20日,美国斯克里普斯研究所金鑫团队在 Cell 期刊发表了题为Massively parallel in vivo Perturb-seq reveals cell type- specific transcriptional networks in cortical development 的研究论文, 阐述了如何在体内模型中进行高通量的细胞特异性基因功能研究。

    数十年的人类遗传学研究令我们掌握了许多与各种人类疾病密切相关的风险基因。然而,我们对这些基因的研究还存在许多局限。比如,一个基因在同一种器官中可能会影响一种或多种细胞类型,且在不同的细胞类型中产生不同的作用。因此,为了进一步了解疾病的发生机制并开发出相应的疗法,揭示这些基因如何影响不同的细胞类型至关重要。然而,如何大规模的对多个风险基因在多种类型细胞中的作用进行高效准确的研究还并不清楚。

    In vivo Perturb-seq结合CRISPR-Cas9基因编辑和单细胞转录组测序,可以同时读取每个细胞的转录组和遗传扰动信息(gRNA序列),并通过对比不同遗传扰动后的转录组变化来研究基因在不同细胞中的功能。该研究利用AAV和转座子系统实现了快速高效的标记和基因编辑,大幅提高了体内高通量CRISPR筛选的效率和能力,为同时研究多个基因在不同细胞类型中的功能提供了灵活的工具,从而更好的理解不同基因在各种生理过程和疾病中的作用机制。

  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(24)00476-8
相关报告
  • 《单细胞转录组数据揭示脑皮层细胞类型在鲸类与人类之间高度保守》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-03-18
    • 从距今约5550万年前的陆地到如今海洋生境的转变对于鲸类而言无疑重塑了大脑,鲸类大脑集早期哺乳动物的保守特征与独有衍生特征于一身。鲸脑内各个细胞类型高效协同工作以维持其独特的认知、运动、听觉及视觉感知等过程。细胞水平的转录组学可以系统地表征脑内细胞的多样性,实现神经科学研究范式由重视细胞解剖向细胞类型分子分类进行过渡。近日,中国科学院深海科学与工程研究所联合青岛华大基因研究院等科研团队,在Molecular Ecology Resources上发表了以A genome and single-nucleus cerebral cortex transcriptome atlas of the short-finned pilot whale Globicephala macrorhynchus为题的研究论文。 该研究获得短肢领航鲸首个公开可用的染色体水平基因组资源,为加深对短肢领航鲸演化和比较基因组学的认知奠定了基础,并为成功获得鲸类脑皮层单核转录组数据提供了可能。该研究进而利用单核转录组测序技术(single-nuclei RNA sequencing,snRNA-Seq)分析了短肢领航鲸脑皮层五个功能区,揭示了短肢领航鲸脑皮层的细胞多样性。该研究定义了鲸类六种主要皮层细胞类型,分别为兴奋性神经元、抑制性神经元、少突胶质细胞、少突胶质前体细胞、星形胶质细胞、内皮细胞,并进一步将神经元划分为8个兴奋性神经元亚群及4个抑制性神经元亚群。这些数据揭示了高分辨率的细胞类型,与之前对短肢领航鲸神经解剖学的发现相呼应,从而为了解鲸脑分子和细胞网络的形成提供了基础数据。鲸类与灵长类动物大约在9000-9500万年前从共同祖先分开,鉴于大脑结构和功能存在明显的相似性与差异性,将鲸类与灵长类动物并列加以比较具有重要意义。因而在上述工作基础上,该研究将短肢领航鲸与灵长类物种人、猕猴(Rhesus macaque, Macaca mulatta)的单核转录组测序数据进行整合,发现三个物种脑皮层细胞类型具有高度的相似性与保守性。 收集保存新鲜鲸类大脑这类罕见大型标本非常来之不易,导致鲸类大脑的转录组分析研究极具挑战。本研究成功构建出一个较为完整的短肢领航鲸脑皮层单核转录组图谱实属不易,对于进一步深刻理解鲸类大脑演化及其分子机制提供了科学基础。
  • 《Cell:李汉杰团队绘制人类免疫系统发育时空图谱,发现两种新型巨噬细胞并揭示其功能》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-09-15
    • 巨噬细胞是免疫系统中不可或缺的组成部分,广泛分布在不同组织中,并在发育、器官形成、稳态维持和疾病发生发展中发挥关键作用【1】。巨噬细胞异质性显著,主要表现在形态、定位、基因表达谱及功能等方面,这些表型由巨噬细胞的发育起源和驻留的微环境所决定【2】。具有组织特异性特征的巨噬细胞包括中枢神经系统的小胶质细胞(Microglia)、肝脏的枯否细胞(Kupffer cells)和表皮的朗格汉斯细胞(Langerhans cells)等。还有一些分布于多个器官的巨噬细胞,如血管周围巨噬细胞(Perivascular macrophages)。   基于啮齿类动物的研究结果,学术界对巨噬细胞亚型的多样性、发育起源以及组织特异性的形成有了一定的认识【3】。然而,这些发现是否适用于人类仍是未知数,特别是人类胚胎发育过程中巨噬细胞的多样性、发育起源、功能及成熟的动态过程等问题还缺乏深入而全面的研究。   2023年9月12日,中国科学院深圳先进技术研究院李汉杰课题组联合深圳市宝安区妇幼保健院、深圳大学、上海交通大学和复旦大学等单位在国际顶尖学术期刊 Cell 上发表了题为:An immune cell atlas reveals the dynamics of human macrophage specification during prenatal development 的研究论文。   研究团队结合单细胞转录组测序、先进的生物信息学手段、多重免疫荧光染色、体外功能实验等技术,构建了横跨18个发育阶段、19种组织的人类胚胎免疫系统发育高分辨率图谱。研究团队重点关注了最具组织特异性的巨噬细胞,鉴定了15种巨噬细胞亚型,其中包括两种新的巨噬细胞亚型,即存在于表皮、睾丸、心脏等外周组织的类小胶质细胞(Microglia-like cells)和具有血管生成促进功能并广泛分布于多个组织中的促血管生成巨噬细胞(Proangiogenic macrophages,PraM)。   该研究通过构建人类产前免疫细胞发育的时空动态图谱,揭示了多种巨噬细胞亚型在发育过程中的分化起源、空间定位、功能特征及转录调控机制。 研究团队对来自受孕后4-26 PCW(Postconceptional Week,PCW)囊括19种人类胚胎组织样本的免疫细胞进行了单细胞转录组测序,获得了近30万个高质量的免疫细胞 (图1),并鉴定了11种主要的免疫细胞类型,包括:巨噬细胞(Macrophages)、祖细胞(Progenitor cells)、B 淋巴细胞、T 淋巴细胞、先天淋巴细胞(Innate-like lymphocytes)、自然杀伤细胞(Natural killer cells)、树突状细胞(Dendritic cells)、单核细胞(Monocytes)、巨核细胞(Megakaryocytes)、粒细胞(Granulocytes)和红细胞(Erythrocytes)。在此基础之上,研究团队对每一种主要的免疫细胞类型进行了更细致的分类,最终注释得到56种免疫细胞亚型。 研究团队重点对巨噬细胞进行了研究并将其进一步细分为了15个亚群。通过时空分析,他们发现在人类胚胎发育时期,巨噬细胞就已经具有了显著的组织特异性。在4 PCW左右(器官初形成阶段),巨噬细胞前体就已经出现在胚胎以及卵黄囊中并一直持续到大概8 PCW,直到被成熟的组织驻留巨噬细胞所替代。 在这些巨噬细胞中,一部分亚型具有显著的组织特异性特征,如中枢神经系统中的小胶质细胞,肝脏中的枯否细胞、表皮中的朗格汉斯细胞等。而另外一部分亚型共享于多个组织中,如促血管生成巨噬细胞以及其前体细胞(pre-Proangiogenic macrophages,pre-PraM)。研究团队还发现肾上腺中有一群特有的组织驻留巨噬细胞(AXL+、FCGR3A+),睾丸中也存在一群特有的组织驻留巨噬细胞(MMP9+)和一群具有破骨细胞特征的巨噬细胞(ACP9+、SIGLEC15+、MMP9+)。 中枢神经系统之外的类小胶质细胞 在该研究中,研究团队首次在胚胎多个外周组织(皮肤、心脏及睾丸)中鉴定出一群和小胶质细胞有相似基因表达谱特征的巨噬细胞(图2)。这一发现打破小胶质细胞只存在于脑及脊髓中的传统认知。这群细胞高表达P2RY12、TMEM119、SALL1、C3等和小胶质细胞相同的特征基因,并且在无监督聚类分析中,这群细胞也和脑、脊髓中的小胶质细胞聚为一类。研究人员因此将这群新发现的分布在多个外周组织的细胞命名为类小胶质细胞(Microglia-like cells)。 流式分析进一步验证了这群外周组织中的类小胶质细胞与中枢神经系统中的小胶质细胞一样,都呈现CD45lowP2RY12+MRC1-的表型。此外,基于多重免疫荧光实验,发现类小胶质细胞在Carnegie Stages 12(CS12)时期就已经出现在表皮组织中。在14 PCW之前,类小胶质细胞一直是表皮中最主要的免疫细胞,此后细胞比例才开始逐渐减少,在20 PCW之后,基本被朗格汉斯细胞替代。在胚胎心脏中,类小胶质细胞最早出现在CS13的主动脉(aorta)中,并且在26 PCW之前一直是主动脉中最主要的免疫细胞。而成人主动脉组织中则检测不到这群类小胶质细胞。在胚胎睾丸中,类小胶质细胞最早能够在CS14的时候被检测到,主要存在于附睾(epididymis)中的输出小管(efferent duct)周围,而在睾丸实质(parenchyma)中比例则较低。 表皮和中枢神经系统均起源于外胚层,而主动脉和附睾则起源于主动脉-性腺-中肾(aorta-gonad-mesonephros,AGM)区域。研究团队推测,小胶质细胞以及类小胶质细胞的前体从卵黄囊迁移到外胚层和AGM区域,随后在这两个区域独立分化为小胶质细胞或类小胶质细胞。 表皮驻留的类小胶质细胞呈极化分布,与神经嵴细胞互作并调控其分化 由于类小胶质细胞在表皮中最为丰富,研究团队进一步研究了它们在表皮组织中的功能。研究团队发现,与四肢和腹部皮肤相比,类小胶质细胞在背部和头部表皮中比例更高。在9 PCW时,背部表皮中几乎所有的免疫细胞都是类小胶质细胞,而四肢表皮中约60%的免疫细胞是类小胶质细胞。进一步定量分析表明,在胚胎发育不同阶段,背部表皮的类小胶质细胞都比四肢表皮更多,分布更密集(图3)。 类小胶质细胞在表皮中的极化分布模式与神经嵴细胞(neural crest cells,NCCs)的背外侧迁移路线(dorsolateral migration)有类似之处,因此研究人员猜测表皮的类小胶质细胞与NCCs之间可能存在某种互作。NCCs是外胚层衍生的多能干细胞,背外侧迁移时可分化为黑色素细胞(melanocytes)。通过多重免疫荧光实验,研究团队发现表皮中的类小胶质细胞和NCCs之间存在直接的相互作用。与之一致的是,研究团队观察到类小胶质细胞和黑色素母细胞(melanoblasts)的密度在不同发育阶段沿表皮的背-侧-腹轴(dorsal-lateral-ventral axis)逐渐降低(图3)。 为了评估类小胶质细胞对神经嵴细胞分化的影响,研究团队体外培养了来源于胚胎背部的新鲜皮肤组织块。在胚胎皮肤中清除类小胶质细胞显著减少了黑色素母细胞的数量,这提示了类小胶质细胞可能会调控神经嵴细胞向黑色素细胞的分化(图3)。 广泛分布于多个脏器中的促血管生成巨噬细胞 研究团队在多个脏器中都鉴定到了一群高表达促血管生成基因(VEGFA、TNF、IL1B、CXCL8/IL8)的巨噬细胞,并且这群细胞在不同组织中都具有相似的基因表达谱。体外成管实验也证实了这群细胞促血管生成的功能。他们进一步分析发现,这群细胞在各个脏器中都富集在血管周围(图4)。 研究团队又进一步分析了这群促血管生成巨噬细胞的发育起源。通过多种拟时序分析算法推断这群细胞是从卵黄囊起源的巨噬细胞前体分化而来,并且中间经历了一个相对不成熟的前体状态(pre-PraM)。拟时序分析推算出的分化轨迹与细胞的真实采样时间高度一致,并且其促血管生成信号也在随之增强。此外,研究团队用成管的内皮细胞上清液培养来源于卵黄囊的早期巨噬细胞前体,发现可以诱导出表达促血管生成基因的巨噬细胞。这些结果明确了这群促血管生成巨噬细胞的发育起源。 总而言之,该研究通过对人类产前阶段近30万个免疫细胞的单细胞转录组分析,着重描绘了15种巨噬细胞亚型的时空动态变化。突破性的发现了一群在转录组、特征蛋白表达、和形态上与中枢神经系统中的小胶质细胞类似且存在于皮肤、睾丸和心脏中的类小胶质细胞。它们是早期表皮中的主要免疫细胞群,沿背-侧-腹轴呈极化分布。这群类小胶质细胞可以与神经嵴细胞相互作用,并调节其向黑色素细胞的分化。通过功能、空间特征、分化轨迹的研究,研究团队还细致解析了一种尚未被充分了解的促血管生成巨噬细胞,它们驻留在多个器官的血管周围。这些促血管生成巨噬细胞与小胶质细胞均从起源于卵黄囊的巨噬细胞前体分化而来(图5)。 该论文为研究人类巨噬细胞的异质性和发育提供了一个高分辨率的时空动态图谱,有助于理解其在发育过程中的不同作用。研究团队还开发了一个专门的可视化平台(http://119.8.233.169/),方便共享数据,促进研究成果的共同探索和领域发展。 中国科学院深圳先进技术研究院李汉杰研究员、深圳市宝安区妇幼保健院朱元方教授、深圳大学总医院吴雪清教授、上海交通大学医学院Florent Ginhoux教授、复旦大学代谢与整合生物学研究院青年研究员王冠琳博士为论文共同通讯作者。中国科学院深圳先进技术研究院客座学生王泽帅(华中农业大学博士研究生)、吴志生(东南大学博士研究生)、研究助理冯若轻;深圳市宝安区妇幼保健院母胎医学研究所陈晓燕博士、王昊博士;复旦大学代谢与整合生物学研究院青年研究员王冠琳博士,厦门大学博士研究生李沐曦、以色列魏茨曼研究所王双寅博士为论文共同第一作者,深圳先进院为第一单位。 论文特别致谢了深圳合成生物研究重大科技基础设施,在研究课题开展过程中,尤其是在单细胞转录组建库前的细胞分选及建库早期的关键步骤中需要使用大量384孔板,合成生物大设施的自动化、高通量平台发挥了不可替代的作用。在研究过程中,仅需要两到三名工作人员在一天内就能够制备上千块孔板,且每一块均能够按照实验要求添加细胞裂解液和引物,从而保证了实验的准确性和可重复性。合成生物大设施高效的工作方式使研究工作得到快速推进。研究团队期待未来能够继续与大设施合作,在合成生物学领域取得更多突破。 参考文献: 1.Park, M.D., Silvin, A., Ginhoux, F., and Merad, M. (2022). Macrophages in health and disease. Cell 185, 4259-4279. 2.Guilliams, M., Thierry, G.R., Bonnardel, J., and Bajenoff, M. (2020). Establishment and Maintenance of the Macrophage Niche. Immunity 52, 434-451. 3.Mass, E., Ballesteros, I., Farlik, M., Halbritter, F., Gunther, P., Crozet, L., Jacome-Galarza, C.E.,Handler, K., Klughammer, J., Kobayashi, Y., et al. (2016). Specification of tissue-resident macrophages during organogenesis. Science 353.