《Cell | 中胚层与内胚层的协同发育使肺类器官和肠道类器官实现类器官特异性血管化》

  • 来源专题:战略生物资源
  • 编译者: 朱晓琳
  • 发布时间:2025-07-14
  • 发表机构:中国科学院动物研究所

    作    者:苗一非(第一作者)

        人体血管系统在不同器官中特化明显,转录组水平上不同器官内皮细胞有其独特基因特征。器官微环境对血管内皮细胞和间充质发育很关键,但人类发育中器官血管化的时空动态变化知之甚少,需含相关细胞谱系和精准构型血管系统的体外平台。类器官作为3D结构,能模拟器官细胞组成和功能,适合研究器官特异性血管发育。现有类器官组装方法多为分化后融合多种细胞,但内皮细胞缺乏器官特异性和明确结构,限制类器官形态与功能成熟,无法体现体内血管细胞发育情况。早期发育中,形态发生信号引导的胚层间协调作用对器官特异性内皮和间充质细胞特化分化至关重要,重现这些作用对建立类器官生理相关血管化很重要。但非中胚层谱系类器官的血管化具挑战性,因诱导多能干细胞分化为中胚层与非中胚层需不同甚至对立信号通路,内胚层类器官血管化研究未获实质突破。特别是,肠道类器官和肺类器官中缺乏健全的血管化,极大地限制了它们在疾病建模和治疗应用方面的生理相关性。

        在该研究中,研究团队利用发育原理建立了一个体外血管化类器官平台,该平台真实地再现了中胚层和内胚层谱系的协同发育,该方法可实现内胚层衍生物与器官型内皮/间充质细胞群的高效分化与谱系特化。传统构建方法通常需要添加十余种因子,而在该方法中,培育肺类器官仅需1种抑制剂——Noggin,培育肠道类器官仅需3种激活剂——CHIR99021、FGF4和VEGFA。3D培养球内细胞会自发分泌血管生长必需的信号分子,从而自然形成血管网络。由此产生的血管化肺类器官和肠道类器官具有器官特异性内皮和间充质,表现出细胞类型多样性增强、三维结构、细胞存活率和成熟度提高的特点,并展现出真实生理功能——肺血管形成紧密屏障(模拟气体交换),肠道血管则呈现高渗透性(利于营养吸收),移植到小鼠体内后,类器官血管与宿主循环系统结合,同时保持了器官特异性,进一步促进了类器官成熟,成功实现了血液灌注,这标志着类器官血管首次具备了体内循环能力。

        这种多谱系类器官系统可用于研究不同疾病背景下异常的细胞间相互作用。肺泡毛细血管发育不良伴肺静脉错位(ACDMPV)是一种先天性肺部疾病,由中胚层FOXF1基因突变引起。然而,传统的肺上皮类器官缺乏表达FOXF1的间充质细胞和内皮细胞,这限制了这些模型模拟这种肺部疾病的能力。研究团队通过将携带FOXF1基因突变的患者来源的iPSC分化为血管化的肺类器官,能够重现该疾病中由内皮-上皮相互作用中断所导致的原发性内皮缺陷以及继发性上皮异常。同步构建的肠类器官更重现患者伴发的肠旋转不良,首次实现同一平台模拟多器官互作疾病,这为传统模型无法破解的复杂病症带来曙光。

    发表日期:2025-6-30

  • 原文来源:https://www.cell.com/cell/abstract/S0092-8674(25)00628-2
相关报告
  • 《Nature | 人多能干细胞的下胚层调控外胚层发育》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-12-08
    • 2023年12月5日,京都大学等机构的研究人员在Nature发表题为Hypoblast from human pluripotent stem cells regulates epiblast development的文章。 最近,一些利用人类胚胎培养和单细胞RNA-seq (scRNA-seq)分析的研究揭示了人类和小鼠之间的差异,因此有必要对人类胚胎进行研究。尽管人类胚胎学的重要性,伦理和法律的限制限制了植入后阶段的研究。因此,最近的努力集中在利用人类干细胞开发体外自组织模型。 该研究报道了从原始人类多能干细胞(hPSCs)中产生真正的下胚细胞(nHyC)的遗传和非遗传方法,nHyC可以产生胚胎发育所必需的两种胚胎外组织之一。nHyCs自发地与原始的hPSCs组装,形成具有前羊膜样腔的三维双层结构(bilaminoids)。在第二胚外组织(滋养外胚层)中存在额外的原始hpsc衍生的类似物时,胆酰胺形成的效率从20%增加到40%,并且胆酰胺内的外胚层继续发育,以响应滋养外胚层分泌的il - 6。 此外,研究人员发现胆胺类物质强有力地概括了前-后轴的模式和反映前原肠胚阶段的细胞形成,其出现可以通过基因操纵DKK1/OTX2次母细胞样结构域来塑造。因此,该研究成功地模拟并揭示了两种胚胎外组织有效地指导外胚层的阶段特异性生长和进展的机制,因为它建立了人类胚胎发生的着床后里程碑。
  • 《动物所等绘制灵长类胚胎原肠运动至早期器官发育转录组图谱》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-14
    •   人的生命始于精子与卵子融合形成受精卵(胚胎期第0天;Embryonic day 0;E0),受精卵经历卵裂形成囊胚,囊胚在E7左右种植到母体子宫进一步发育。E14开始,胚胎经历原肠运动,胚胎后部细胞发生大规模定向迁移,并形成原条细胞。原条细胞进一步分化为中胚层和定型内胚层(definitive endoderm),同时胚胎前部细胞分化为外胚层。基于此,胚胎发育成为具有内胚层、中胚层和外胚层的三胚层胚胎。经过复杂的信号通路调控,三胚层胚胎进一步形成各种器官原基,并最终形成我们身体中包括神经系统、消化系统、呼吸系统、心血管循环系统、泌尿生殖系统等所有系统的各种器官。原肠运动和三胚层分化异常与多种出生缺陷(如先天性心脏病和神经管畸形等)和发育源性疾病相关。探索人类早期胚胎发育过程及机制对于这些疾病的诊断和治疗至关重要。为了精准地描述不同发育时期人类胚胎特征并进行物种间胚胎发育比较,自20世纪早期美国卡耐基研究所的Franklin Mall等将人类胚胎发育的前60天(E0-E60)划分为23个发育时期,即Carnegie stage(CS1-CS23)。目前,通过体外胚胎培养等方法,人类CS1-CS6(E0-E14)胚胎发育事件已被多个团队解析;借助一枚宝贵的在体胚胎,人类CS7胚胎的关键发育事件(原肠运动等)也开始被阐明。然而,由于临床诊疗规范限制,人CS8-11的正常胚胎极难获得,因此尚无关于在此阶段发生的中晚期原肠运动和早期器官发育事件的研究。非人灵长类(如食蟹猴)在进化、生理特征及胚胎发育方面与人类高度类似,可作为研究人类早期胚胎发育的替代模型。由于人类早期胚胎难于获得,一些人类早期胚胎上难以回答的问题可借助非人灵长类胚胎实现。   12月14日,中国科学院动物研究所王红梅和郭帆团队、美国德克萨斯大学西南医学中心吴军团队以及安徽医科大学蒋祥祥团队合作,在《自然》(Nature)上,发表了题为Primate gastrulation and early organogenesis at single-cell resolution的研究论文。该研究以食蟹猴为模型,利用单细胞转录组测序和干细胞分化模型等,绘制了食蟹猴CS8-CS11时期(E20-E29)胚胎的单细胞转录组图谱,揭示了原肠运动和三胚层分化(神经管、体节、肠管等的发育)过程中重要细胞类群的特征及其谱系发生和调控机制,并比较了啮齿类和灵长类早期胚胎发育事件的进化差异。   研究收集了CS8-CS11阶段的食蟹猴胚胎,利用10X单细胞转录组测序技术捕获了56636个单细胞并进行生物信息学分析,明确定义了食蟹猴该时期的38个主要细胞类群,绘制了目前国际上第一张灵长类CS8-CS11胚胎的高通量单细胞转录组图谱(图1)。   啮齿类动物(小鼠)原肠运动阶段的胚胎三胚层细胞分化过程已有相对全面清晰的描述,但在灵长类动物上的研究仍非常有限。为了探讨灵长类原肠运动阶段胚胎三胚层细胞分化的精细过程,研究通过RNA轨迹分析描绘了原条细胞的三向分化潜能——初始中胚层(nascent mesoderm)、定型内胚层和原结(node)。其中,初始中胚层可进一步分化为神经中胚层祖细胞(neuromesoderm progenitor,NMP)、前体节中胚层(presomite mesoderm,PSM)、轴旁中胚层(paraxial mesoderm)、中间中胚层(intermediate mesoderm)、侧板中胚层(lateral plate mesoderm)、生心中胚层(cardiac mesoderm)和胚外中胚层(extraembryonic mesoderm)等细胞类型;定型内胚层与原肠运动之前形成的脏壁内胚层(visceral endoderm)共同贡献于肠管(gut tube)的形成;原结进一步参与轴正中中胚层(axial mesoderm)的形成。此外,研究基于生物信息学分析推测,由外胚层分化而来的神经管前后不对称和背腹不对称的发育模式是由WNT、SHH和TGB-β等信号在胚胎前后轴和背腹轴的不对称表达所介导。   哺乳动物早期胚胎发育过程在进化上高度保守,但不同物种哺乳动物的早期胚胎发育过程存在特异的分子特征。研究全面比较了相同发育阶段的小鼠和食蟹猴胚胎的转录组差异(图3),揭示了两物种胚胎中对应细胞类型的分化调控异同。研究发现,T、EOMES和TBX6基因在小鼠和食蟹猴的原条、初始中胚层、神经中胚层祖细胞和外胚层细胞中的表达模式不同。此外,与小鼠相比,Hippo信号通路的多个下游基因在食蟹猴的NMP/PSM中被显著上调。为剖析Hippo信号通路在灵长类动物与啮齿类动物NMP/PSM形成过程中的不同作用,研究构建了人、猴和小鼠胚胎干细胞诱导产生的NMP/PSM体外模型,同时,通过添加抑制剂等实验发现,Hippo信号通路在灵长类NMP/PSM细胞仍保持高度活化状态,而在小鼠NMP/PSM细胞中被抑制(图3)。由此,研究推测,Hippo信号通路在人和猴NMP/PSM细胞中的高度活化状态可能与灵长类胚胎体轴更长、胚胎体积更大及发育周期更长等体征密切相关。   基于干细胞的人类胚胎模型(类胚胎)对人胚胎早期发育研究至关重要。近年来,类原肠胚、类神经胚、心脏类器官及类体节的模型相继构建成功。然而,由于缺乏灵长类动物体内相应时期胚胎的发育数据,这些胚胎模型对在体真实胚胎的模拟程度无法被直接证实。本研究为未来相应时期胚胎模型的构建提供了在体的比对数据。同时,研究利用这一在体数据,初步探究上述胚胎模型与在体胚胎的相似度,发现上述胚胎模型在细胞类型方面与在体胚胎存在一定相似性,但在关键信号通路激活程度、转录因子表达等多方面与在体胚胎存在差异。   综上,本研究揭示了灵长类动物原肠运动至早期器官发育阶段胚胎的细胞组分与分子特征、细胞谱系发生过程及分子调控机制。该工作推进了灵长类胚胎原肠运动至早期器官发育阶段领域的研究进展,为人类胚胎模型的研究提供了必要的在体数据参考,并为阐释人类早期胚胎发育过程的调控机理以及发育异常相关疾病的病理奠定了坚实基础。