《我国科学家制备多孔纳米流体膜实现高性能渗透能量转换》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-04-10
  • 淡水和海水之间的离子梯度被认为是一种很有前景的可再生能源,也被称为蓝色渗透能或盐度梯度能。目前,膜基反电渗析技术是收集该能源的主要技术之一,其中使用的膜主要为离子交换膜,但是由于离子交换膜的离子传输效率相对较低,导致目前的反电渗析技术普遍存在渗透能转化效率低下的问题,阻碍了其在实际中的应用。

    近期,我国科学家在电鳗细胞膜具有高速离子通道的多孔结构启发下,将多孔结构材料与纳米流体相结合,研发了一种基于水凝胶的多孔纳米流体膜,可实现渗透能的高效转化。研究团队采用顺序叶片铸造法,制备了由一层功能聚电解质水凝胶膜和一层多孔芳纶纳米纤维支撑膜组成的有机非均相膜。该多孔纳米流体膜固有的静电、化学和结构上的不对称性,使得系统具有稳定的离子二极管效应,极大地促进了阳离子从纳米纤维层向水凝胶层的传输。此外,水凝胶层可以为离子扩散提供一个广泛充电的三维网络,从而可以大大提高界面传输效率,为实现盐度梯度发电提供了基础。将天然海水与河水混合时,利用该多孔纳米流体膜来发电,其功率输出高达约5.06Wm-2,证明了该多孔纳米流体膜在非均相渗透发电领域的巨大前景,为膜基反电渗析技术及蓝色渗透能的发展提供了新的思路与视角。

相关报告
  • 《我国制备出碳纳米管光电传感存储器件 实现光学图像传感与图像存储》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-03-19
    • 电荷耦合器件(CCD)与电荷存储器件(Memory)作为现代电子系统中两个独立分支分别沿着各自的路径发展,同时具备光电传感和存储功能的碳基原型器件尚未见报道。记者从中国科学院金属研究所沈阳材料科学国家研究中心获悉,该中心科研人员与国内多家单位合作,提出了一种基于铝纳米晶浮栅的碳纳米管非易失性存储器,这为可穿戴电子及特殊环境检测系统提供了新的器件设计方法。 图片说明:新型器件设计与结构示意图。(图片由受访单位提供) a)器件结构示意图;b)均匀离散分布的铝/氧化铝纳米晶点阵结构与c)碳纳米管薄膜沟道材料的扫描电镜图;d)沟道中电荷密度分布仿真;e)铝纳米晶表面形貌图;f)碳纳米管薄膜与浮栅层结构的截面透射电镜与元素分布图;g)存储窗口 近日,该成果在《先进材料》线上发表了题为“柔性碳纳米管传感-存储器件”的研究论文。据悉,新型器件具有高的电流开关比、长达10年的存储时间以及稳定的读写操作,多个分立的铝纳米晶浮栅器件具有稳定的柔性使役性能。更重要的是,电荷在氧化生成的AlOx层中的隧穿机制由福勒-诺德海姆隧穿变成直接隧穿,从而实现光电信号的传感与检测;基于理论计算分析与实验优化设计,制备出32×32像素的非易失性柔性紫外光面阵器件,首次实现了光学图像的传感与图像存储,为新型柔性光检测与存储器件的研制奠定了基础。 据介绍,科研人员采用半导体性碳纳米管薄膜为沟道材料,利用均匀离散分布的铝纳米晶/氧化铝一体化结构作为浮栅层与隧穿层,获得高性能柔性碳纳米管浮栅存储器,实现在0.4%弯曲应变下器件读写与擦除之间的电流开关比高于105,存储稳定性超过108 秒。同时,极薄的氧化铝隧穿层可使在擦除态“囚禁”于铝纳米晶浮栅中的载流子在获得高于铝功函数的光照能量时,通过直接隧穿方式重新返回沟道,使闭态电流获得显著提升,完成光电信号的直接转换与传输,实现集图像传感与信息存储于一体的新型多功能光电传感与存储系统。 该项研究由中国科学院金属所、中国科学院苏州纳米所、吉林大学科研人员共同合作完成,并得到了国家自然科学基金、中国科学院及中国科学院金属所、沈阳材料科学国家研究中心等项目资助。
  • 《我国科学家制出可规模化生产的高性能双极膜》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-01-08
    • 记者从中国科学技术大学获悉,该校徐铜文教授和吴亮教授团队在低成本高性能双极膜开发及产业化方面取得突破进展,他们采用原位生长思路,研制出一种具有优异稳定性和水解离产酸碱能力的高性能双极膜。该成果于1月4日在线发表于《自然·通讯》。 国内双极膜产品处于批量试制阶段,大规模产业化仍面临两大难题:一是阴阳膜层由于膨胀系数不同,使用过程中容易分层;二是双极膜多采用小分子或者过渡金属离子,作为中间层催化剂,使用过程中催化剂易泄漏失效。 针对第一个难题,研究团队开发了聚苯醚基材的阴阳膜层,解决了两层材料膨胀系数不同的问题。针对第二个难题,研究团队先后制备出系列由亲水性高分子、明胶、超支化高分子、凹凸棒土等固载过渡金属离子构成的中间催化层结构。但这些尝试用于规模制备时,双极膜的水解离压降偏高,催化层稳定性不能满足工业长期应用的需求。为进一步提升双极膜水解离效率和中间层稳定性,研究团队采用原位生长思路,通过调控苯胺分子在阴阳膜层界面处原位锚定、聚合生长并包裹碱式氧化铁颗粒,构建出稳定水解离中间层制备双极膜。 测试结果表明,该双极膜具有极低的水解离启动电压,表现出优异的稳定性和水解离产酸碱能力。在此基础上,研究团队开发出具有自主知识产权的高性能双极膜材料及流延+催化层喷涂一次性成型制备技术,目前已建成中试生产线,规模化生产线正在建设中。