《荷兰团队研发出用于高精度材料测量的片上技术》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-03-29
  • 近日,荷兰代尔夫特理工大学(DELFT) 团队开发出了一种芯片上技术,以高精度测量材料中的距离,例如水下或医学成像。该技术依赖于声音振动,适用于不透明材料的高精度位置测量,相关仪器或将带来监测地球气候和人类健康的新技术。

    研究人员结合了光学捕获和频率梳两项技术来构建他们的微芯片,该芯片主要由一块形状像蹦床的薄陶瓷片组成。这种薄片上有专门的孔,从而能够增强其与激光的相互作用,其厚度约比人类头发直径要细1000倍。

    当与激光束接触时,这种薄陶瓷片的表面会剧烈振动。通过测量振动表面反射的激光,研究人员发现并观察到了梳子形状的振动模式,这是他们以前从未见过的。该研究小组得出结论称,这种梳子状的特征可以作为精确测量距离的“尺子”。

    频率梳操作的主要挑战是对驱动频率和功率的要求都很严格。而研究人员展示了一种机制,以创建由单个特征频率的机械泛音组成的频率梳——这是通过将悬浮介质膜与反传播光学阱整体集成来实现的。

    这项技术的独特之处在于它不需要精密的硬件,而且很容易生产。这种方法只使用毫瓦的连续波激光束。代尔夫特理工大学(DELFT) 助理教授Richard Norte表示:“我们不需要复杂的反馈循环,也不需要调整某些参数来让我们的技术正常运行。这使得它成为一种非常简单和低功耗的技术,更容易在微芯片上小型化。考虑到这些微芯片传感器的体积很小,未来我们或许可以把它们放在任何地方。”

    光学频率梳获得了2005年的诺贝尔奖,在世界各地的实验室中被用于非常精确的时间测量和距离测量。而上述研究中科学家们制造了一种声波频率梳,它是由膜中的声音振动而不是光制成的。这种基于声波的易于使用的微芯片技术未来将应用在更广泛的场景之中。

相关报告
  • 《英国萨里大学研发出基于复合材料技术的超级电容器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-05-21
    • 英国萨里大学的专家认为,清洁能源存储的梦想比以往更近了一步,因为他们推出了突破性的超级电容器技术,该技术能够以高功率存储和输送电力,特别是用于移动应用。 萨里大学高级技术学院(ATI)的研究人员在《能源与环境材料》杂志上发表了一篇论文,揭示了他们的新技术,该技术有可能彻底改变电动汽车的能源使用并减少国家电网中基于可再生能源的损失。该团队还相信,他们的技术可以通过消除能源的间歇性来帮助推动风、浪和太阳能的发展。 ATI的超级电容器技术基于一种称为聚苯胺(PANI)的材料,该材料通过一种称为“伪电容”的机制来存储能量。这种廉价的聚合物材料具有导电性,可以用作超级电容器设备中的电极。电极通过将离子捕获在电极内来存储电荷。它通过与离子“交换”材料的电子交换电子来实现。 团队在他们的论文中详细介绍了他们如何使用碳纳米管、PANI和水热碳开发新的三层复合材料,该复合材料在高能量密度下显示出显着的速率能力,而与功率使用无关。 该项目的首席科学家,萨里大学的博士生Ash Stott表示:“全球能源的未来将取决于消费者和行业如何更有效地利用和产生能源,超级电容器已经被证明是间歇性存储和大功率输送的有效途径之一。我们的工作为高功率设备建立了基线,该设备也以高功率工作,有效地扩大了潜在应用范围。” 萨里大学ATI主任拉维·席尔瓦(Ravi Silva)教授说:“ 这项雄心勃勃且富有影响力的工作有可能改变我们所有人的生活方式-这可能是改变变革以提高效率的必要条件以及从环境中收集能量的快速充电解决方案,我们认为这对所有行业都有影响-从所有可穿戴技术到将引发5G革命的移动物联网应用,我们的超级电容器的潜力是无限的。”(来源:萨里大学官网)
  • 《科研团队研发出“万物DNA”材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-12-11
    • 据英国《自然·生物技术》杂志9日发表的一项研究,科学家报告了一种前所未有的、运用“万物DNA”特殊材料3D打印出来的“兔子”!该材料包含了用以合成DNA编码的兔子“蓝图”,之后,原始兔子所含的DNA被解码,稳定地复制了5代兔子。   全球的数据量不断增加,传统的存储架构,如硬盘和磁带,越来越难以跟上数据存储的需要。随着这些装置逐渐达到存储极限,DNA被当作一种长期存储方案提出来。过去的研究已经强调了DNA的持久性和存储海量信息的能力,现在研究人员已经发现一种前所未有的方式,可利用其持久性进行存储。   以色列计算遗传学家亚尼夫·埃尔利赫和罗伯特·格拉斯等人,开发了“万物DNA”存储架构,它可以生成具有不变记忆的材料。为了检验这一方法,他们将常见的计算机图形测试模型“斯坦福兔子”的蓝图编码为DNA兼容格式,再将其存储在DNA分子中,进而将DNA分子封装在二氧化硅小球内,将小球嵌入可生物降解的热塑性聚酯中,最后使用所得的热塑性聚酯3D打印了“兔子”。   之后,团队利用存储在“兔子”中的DNA进行复制:从3D打印兔身上截下一小块,解码其中包含的DNA分子。这样创造出了5代的“兔子”,且没有任何信息损失,由前一代扩增的DNA被封装到下一代中;DNA蓝图一直保持稳定——即使第四代和第五代之间相隔了9个月。   在第二项实验中,研究人员将一段有关华沙犹太区档案的视频编码进树脂玻璃中,再用该树脂玻璃制造普通的眼镜。只需一小块树脂玻璃,就能恢复其中隐藏的信息。   研究团队提出的“万物DNA”概念,将信息藏于其中,可用于制造日常物品。   总编辑圈点   当今社会,数据暴涨。传统存储方式,总有一天会难以为继。人们将目光投向了大自然,投向了神奇而精巧的生物存储。有人研究过,DNA信息储存密度为一千万TB/立方厘米。在这种密度下,一个大约一米长的DNA立方体,就能满足目前世界上一年的信息储存需求。而且,它如此稳定。我们至今都能通过一截牙齿,一块骨头,还原遥远生物的全基因组信息。文中的万物DNA是一种新的存储架构,这意味着DNA存储的可能性又被进一步拓展。