《英国萨里大学研发出基于复合材料技术的超级电容器》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-05-21
  • 英国萨里大学的专家认为,清洁能源存储的梦想比以往更近了一步,因为他们推出了突破性的超级电容器技术,该技术能够以高功率存储和输送电力,特别是用于移动应用。

    萨里大学高级技术学院(ATI)的研究人员在《能源与环境材料》杂志上发表了一篇论文,揭示了他们的新技术,该技术有可能彻底改变电动汽车的能源使用并减少国家电网中基于可再生能源的损失。该团队还相信,他们的技术可以通过消除能源的间歇性来帮助推动风、浪和太阳能的发展。

    ATI的超级电容器技术基于一种称为聚苯胺(PANI)的材料,该材料通过一种称为“伪电容”的机制来存储能量。这种廉价的聚合物材料具有导电性,可以用作超级电容器设备中的电极。电极通过将离子捕获在电极内来存储电荷。它通过与离子“交换”材料的电子交换电子来实现。

    团队在他们的论文中详细介绍了他们如何使用碳纳米管、PANI和水热碳开发新的三层复合材料,该复合材料在高能量密度下显示出显着的速率能力,而与功率使用无关。

    该项目的首席科学家,萨里大学的博士生Ash Stott表示:“全球能源的未来将取决于消费者和行业如何更有效地利用和产生能源,超级电容器已经被证明是间歇性存储和大功率输送的有效途径之一。我们的工作为高功率设备建立了基线,该设备也以高功率工作,有效地扩大了潜在应用范围。”

    萨里大学ATI主任拉维·席尔瓦(Ravi Silva)教授说:“ 这项雄心勃勃且富有影响力的工作有可能改变我们所有人的生活方式-这可能是改变变革以提高效率的必要条件以及从环境中收集能量的快速充电解决方案,我们认为这对所有行业都有影响-从所有可穿戴技术到将引发5G革命的移动物联网应用,我们的超级电容器的潜力是无限的。”(来源:萨里大学官网)

相关报告
  • 《 基于多孔纳米碳纳米复合材料的柔性可穿戴超级电容器》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-10-21
    • 带有交织式LED的晚礼服看起来很奢侈,但光源需要来自可穿戴,耐用且轻巧的设备的恒定电源。中国科学家已经为可穿戴设备制造了纤维状电极,这种电极具有很高的能量密度,具有很高的柔韧性和优越性。微流控技术是制备电极材料的关键,是微流控技术,如《 Angewandte Chemie》杂志所述。 衣服上的数百个小型LED发出的闪闪发光的灯光可能会在宴会厅或时装表演中产生醒目的效果。但是可穿戴电子设备也可能意味着集成在功能性纺织品中的传感器,以监测例如水的蒸发或温度变化。为此类可穿戴设备提供动力的储能系统必须兼具可变形性,高容量和耐用性。然而,可变形电极经常不能长期运行,并且其容量落后于其他现有技术的储能装置。 电极材料通常受益于孔隙率,电导率和电化学活性的良好平衡。来自中国南京工业大学的材料科学家Su Chen,关武及其团队对软电极的材料需求进行了更深入的研究,并开发了由两种碳纳米材料和金属有机框架合成的多孔杂化材料。纳米碳具有大的表面积和优异的导电性,而金属有机骨架则具有多孔结构和电化学活性。 为了使电极材料在可穿戴应用中具有柔性,通过使用创新的吹纺机将微孔碳骨架与热塑性树脂纺成纤维。最终的纤维被压制成布并组装成超级电容器,尽管事实证明,另一轮带有微介孔碳骨架的涂层进一步改善了电极性能。 由这些电极制成的超级电容器不仅可变形,而且与同类设备相比,它们还可以具有更高的能量密度和更大的比电容。它们稳定并且承受了10,000多次充电-放电循环。科学家们还在实际应用中对它们进行了测试,例如服装中LED的智能颜色切换以及功能性服装中集成的电子设备的太阳能电池控制供电。 作者指出,基于微流体液滴的合成是提高可穿戴电子设备电极材料性能的关键。他们认为,这完全是关于调整完美的多孔纳米结构。 ——文章发布于2019年10月18日
  • 《俄芬科学家联合研发出柔性超级电容器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-02-01
    • 俄罗斯斯科尔科沃科技学院与芬兰阿尔托大学的科研人员联合研发出柔性超级电容器,其电极采用单层碳纳米管,而绝缘层则采用氮化硼纳米管制备。电容器可承受变形,且具有制造简单、使用寿命长的特点。相关成果发布在《Scientific Reports》科学期刊上。 俄芬联合科研团队回归到“古典”技术路线,即采用“双电极+绝缘层”的电容器结构方案。柔性超级电容器的电极采用单层碳纳米管,材料所具有的孔隙结构可保证电极发达的比表面积,从而提高其电容量,且材料化学稳定,为良导体。而电极之间的空间填充氮化硼纳米管作为绝缘层,材料具有良好绝缘性,0.5毫米的厚度即可保证相应的绝缘指标要求,且材料强度高、塑性好。 柔性超级电容测试试验结果表明,2万次充放电后电容器仍能保持96%的初始电容量,其等价内阻低,仅为4.6欧姆,且可承受1千次以上的拉伸试验,相对伸长量可达50%。超级电容器的制备采用干法沉积和气相沉积方法,工艺简单,成本低廉,预计柔性超级电容器将很快进入批量生产。 普通电容器由两个电极及绝缘层构成,而超级电容器的结构相对复杂一些,其电极之间的空间填充了电解质,名义电极和电解质交界处所形成的离子层发挥着电极的作用。电子技术的迅速发展不断对电容器提出新的性能要求,而电子设备的小型化客观要求作为其重要元件的电容器微型化,这就需要不断完善并开发新型电容器。 近年来人们热衷于柔性笔记本电脑,这又对电容器提出了能够承受弯曲和拉伸的性能要求。在这种情况下,聚合物及电解质基础上的超级电容器不能满足要求,其一,其物理性能不符合要求,且机械强度低;其二,其规格大,材料厚度一般为0.2毫米,简单采用缩小规格的方法会造成电容器内阻值的急剧增大。在性能指标上,柔性超级电容器具有更广阔的市场空间。