当前,药物设计及研发的一个热门方向是构筑双价配体分子。该类分子是将两个药效明确的配体分子通过连接子偶联形成;其中,每个配体分子分别识别两个不同蛋白受体的位点、或同一蛋白受体的不同位点(如正构或变构位点),并通过连接子协调配体-受体的相互作用,从而增强药物疗效、提高药物选择性、并克服耐药等[1]。双价配体分子可以调控的蛋白受体众多,如G蛋白偶联受体(GPCR)、激酶、离子通道、氧化酶以及二聚化蛋白等。由于在药物研发上的优势,双价配体分子越来越受到国际各大研究机构的关注,对许多传统意义上不可成药的靶点赋予新的成药潜力,且已有双价配体分子进入临床研究[2],展示了广阔的开发前景。
构筑双价配体分子的关键是连接子的筛选及优化,因为它能够通过调节两个配体分子的空间距离及空间构象,影响药理学活性。当前方法主要采用聚合物(如聚乙烯、聚乙二醇等)作为连接子来构筑并筛选双价配体分子,面临以下问题:首先,聚合物连接子在合成中聚合度难以精确控制,导致难以精准调控药效团之间的空间距离;其次,聚合物连接子常由单一重复单元构成,难以实现配体分子与受体结合时空间取向的精细调节;此外,构筑筛选过程中需要将不同长度及结构组成的聚合物连接子逐一与药效团进行化学偶联,合成及纯化步骤繁琐。综上,双价配体分子的高效构筑及精细调控是制约本领域发展的瓶颈问题。
近日,上海交通大学医学院肖泽宇课题组与张健课题组合作,在Cell重要子刊Chem在线发表了题为DNA-modularized construction of bivalent ligands precisely regulates receptor binding and activation的研究论文,开发了DNA模块化可编程的策略来构筑双价配体分子,实现在单脱氧核苷酸水平对受体识别及激活构象的精细调控。该策略借鉴DNA分子的可编程构筑方式,将两个配体分子分别修饰成可用于DNA固相合成的“类核苷酸”药效团模块,将天然脱氧核苷酸作为连接子模块,并利用DNA固相合成仪,自动化高效构筑双价配体分子的筛选库。通过编程脱氧核苷酸的数目来精细调节连接子的长度,实现对两个药效团之间空间距离在0.33纳米尺度的调控;通过编程脱氧核苷酸的碱基排列来调节连接子的结构多样化,实现对药效团空间取向的精细调控,从而高效筛选获得对受体识别亲和力最高、激动效能最强的双价配体分子。该策略为双价配体分子的设计开发提供了全新的思路,在药物设计及生物医学研究领域具有广泛的应用前景。