《Nature Communications | 模块化和可编程地控制哺乳动物细胞多个基因表达剂量的人工基因线路》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-03-24
  • 北京时间3月18日,中国科学院深圳先进技术研究院合成生物学研究所娄春波课题组与北京大学物理学院定量生物学中心欧阳颀/钱珑团队合作在Nature Communications上发表精准控制哺乳动物细胞多个基因表达剂量的人工基因线路,题为“Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system”。该工作通过在哺乳动物构建人工正交转录系统,实现了单个和多个启动子转录活性的精准微调,构建了具有预测能力的多基因表达量的定量热力学模型,并将这个定量模型应用于甲型流感病毒(H1N1)病毒样颗粒(VLP)组分与产量的优化设计。秦宸睿、项延会和刘杰为共同第一作者,中国科学院深圳先进院娄春波和北京大学钱珑为文章共同通讯作者。

    在哺乳动物细胞中,精确调控基因线路对于细胞适应环境、稳态维持和发育分化等生理功能至关重要。关键基因表达量过量或不足都可能导致癌症等重要疾病。此外,多个细胞命运决定因子表达剂量也是重塑细胞命运分化和发育的关键因素。然而,在哺乳动物细胞中,基因表达受到多种复杂因素的影响,例如:基因顺序、基因组位置、表观遗传修饰和宿主细胞类型等,使得精确控制基因表达剂量变得非常困难。比如说,常用的启动子EF1α的转录活性在HEK293T等七个细胞系中受到细胞类型的显著影响;而CMV强启动子在运动神经元细胞中的表达活性会出现起始活性很高而随后逐渐减弱的情况。因此,模块化、不受细胞类型影响且可编程的基因表达系统成为哺乳动物细胞生物学和合成生物学研究中的重要瓶颈问题。  

    本文提出一种设计策略,旨在开发一种模块化、独立于宿主的正交型转录系统。该正交型转录系统由正交型启动子库和单体RNA聚合酶(RNAP)组成。该系统通过将RNA加帽酶与单体RNAP融合,可确保原核来源的单体RNAP在哺乳动物细胞中按照“跨域(domain)”方式实现基因转录、转录后修饰、出核和翻译等真核系统蛋白质表达的必需步骤(图1)。  

    本论文发现了不同基因表达活性的竞争效应,并建立了定量的热力学模型。针对两个基因的竞争问题,研究团队设计了一个哺乳动物细胞系中的两个报告基因(图2)。在这个双报告基因体系中,每个报告基因由正交型启动子库中的七个代表性启动子之一控制,共有49种不同的组合。实验结果发现一个基因的强启动子显著降低了另一个基因的表达。这个结果证明了两个报告基因在竞争有限资源( [RNAP]free)。因此,本论文提出了利用[RNAP]free取代的[RNAP]tot的新型热力学方程式(图2e)。     

    在哺乳动物细胞中,多个基因的先后顺序也会显著影响基因表达量。为了研究基因先后顺序对基因表达量的影响,研究团队设计了三个报告基因的六种可能的先后顺序(1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, 3-2-1),并计算了报告基因在所有六种组合中的表达量的方差 (图3)。作者们发现同一启动子的表达量的方差系数(CV) 非常小。这个结果表明启动子活性不受其局部基因环境的显著影响,而且在CHO和HEK293T细胞株中都保持类似行为。另外,研究团队在50个启动子库中,针对三个不同报告基因任意选择其启动子(活性变化100倍左右)。通过修正的热力学模型,文章预测了三种报告基因的活性。根据实验结果发现哺乳动物细胞中的三个基因的蛋白表达量都可以由模型预测(R2=0.81~0.88)。    

    为证实正交转录系统的优势,研究团队使用定量热力学模型优化了病毒样颗粒的多个亚基的基因表达剂量。病毒样颗粒(VLP)是由多个蛋白质组成的无病原性并且不能进行复制的纳米颗粒。在疫苗和药物传递等生物医学领域具有广泛的应用潜力。多个蛋白亚基的表达水平对于VLP的组装效率和免疫原性至关重要。因此,团队研究了表达水平的可编程性以及它对VLP产量的影响。首先,作者们验证了在适当的表达剂量条件下,甲型流感病毒的三个关键亚单位(血凝素(HA)、神经氨酸酶(NA)和基质蛋白1(M1))可以形成稳定的VLP。然后,构建了两个融合基因(egfp-M1和NA-mCherry),用于定量表征VLP的产量和完整度。接着,使用修正后的定量热力学模型预测了所有预设启动子参数和基因特异性参数的VLP产量(共157,464个组)。通过虚拟筛选和理论分析,研究团队发现HA基因的高表达对产生VLP有害,而适当表达的三个基因则可以产生更多的VLP颗粒。最后,团队选择了十余组高产组合进行实验验证,结果发现所有组合都产生了更多的VLP颗粒,并且实验结果与预测值相符,其中预测值越高实验结果越好。

    综上所述,本研究开发了一种模块化、可编程的正交型转录调控系统。此外,该研究还建立了基于胞内资源竞争和结合能的定量热力学理论模型,可以实现对哺乳动物细胞中多个基因表达剂量的精确设计和预测。通过利用这种正交型转录系统,研究团队还成功地优化了甲型流感病毒病毒样颗粒(VLP),为新型高效甲型流感疫苗的开发和生产提供了潜力。

    该工作得到了国家重点研发计划项目,国家自然科学基金,中国科学院先导计划、青年交叉团队项目和深圳合成生物学创新研究院的资助。

  • 原文来源:https://www.siat.ac.cn/sy2016/index_64251.html?docurl=https://www.siat.ac.cn/kyjz2016/202303/t20230320_6702106.html
相关报告
  • 《研究设计哺乳动物细胞基因线路》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2021-03-08
    • 研究设计哺乳动物细胞基因线路 通过基因工程使细胞执行可定制的功能是一个新兴的生物技术前沿,可以进行许多技术和转化应用。然而,在哺乳动物细胞中进行可预测的基因线路设计仍然是一个较大的挑战。 2021年2月19日Science Advances报道,美国西北大学的Josh Leonard团队通过利用高性能的转录和翻译后调控元件和计算模型,开发了一种在哺乳动物细胞中实现可预测基因线路设计的方法。 研究小组使用实验室开发的遗传部件的“工具包”,利用计算模型来识别有用的基因设计,然后再在实验室中进行构建,研究人员设计并测试了几十个遗传电路。结果显示,每个基因程序按预期工作,多种基因程序的组合能够在人类细胞中实现所需的有用功能。研究者成功地在哺乳动物细胞中构建整合转录和翻译后控制的多功能蛋白质,描述这些机制的经过验证的模型,实现了数字和模拟处理,以及有效地将遗传电路与传感器连接在一起进行多输入评估。该研究团队利用该设计框架实现了多种功能,包括数字和模拟信息处理,感知-响应电路等。该研究有助于启发生物工程师利用合成生物学在哺乳动物细胞中定制遗传程序,有望开发利用活细胞和合成生物学的新疗法来应对癌症等疑难疾病。   吴晓燕 孙裕彤 编译自https://www.republicworld.com/technology-news/science/cancer-can-now-be-treated-using-living-cells-and-synthetic-biology-researchers-find.html 原文链接:https://advances.sciencemag.org/content/7/8/eabe9375 原文标题:Model-guided design of mammalian genetic programs
  • 《Cell | 可编程控制哺乳动物细胞死亡的合成蛋白质电路》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-24
    • 2024年4月23日,霍华德·休斯医学研究所和加州理工学院(帕萨迪纳)的研究人员在Cell发表了题为Synthetic protein circuits for programmable control of mammalian cell death的文章。 细胞凋亡和裂解等天然细胞死亡途径具有双重作用:它们既能清除有害细胞,又能通过抑制或刺激炎症来调节免疫系统。能够在靶细胞中触发特定死亡程序的合成蛋白质回路同样可以清除有害细胞,同时适当调节免疫反应。然而,细胞会主动影响它们的死亡模式,以响应自然信号,因此控制死亡模式具有挑战性。 该研究介绍了受自然启发的 "同步凋亡 "回路,它通过蛋白水解来调节工程刽子手蛋白和哺乳动物细胞的死亡。这些电路可引导细胞死亡模式,对蛋白酶输入的组合做出反应,并选择性地消灭靶细胞。此外,同步凋亡回路还能在细胞间传播,为工程合成杀伤细胞提供了基础,这些细胞能在靶细胞中诱导所需的死亡程序,而不会自我毁灭。这些结果为哺乳动物细胞死亡的可编程控制奠定了基础。