《致力于纳米颗粒的印刷机的研究:新技术可以方便的在电子,医疗应用中使用金纳米粒子》

  • 来源专题:纳米科技
  • 编译者: chenfang
  • 发布时间:2016-01-11
  • 金纳米颗粒具有不寻常的性能,科学家正在寻求放入一系列技术中来使用。当纳米粒子紧密的结合起来时,一些最有趣的属性就会出现。但一个主要的挑战就是要找到一种方法来组装这些金纳米粒子,同时控制其三维形状的安排。在一篇新文章中,研究者们勾勒出一种新技术。

    研究人员已经开发出一种方法是使用由DNA的合成纱制成微小结构,来帮助组织纳米颗粒。科学家们连接到金粒子表面的单个链,以创建各种组件。此项研究受加拿大自然科学与工程研究委员会、加拿大创新基金会、自组装化学结构中心、加拿大研究椅计划及加拿大卫生研究所提供的资金支持。

相关报告
  • 《自愈纳米颗粒的广泛应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-11-25
    • AZO于2020年11月24日发布关于纳米颗粒的内容,文章指出自愈材料的有用性在两年前被发现,这种材料至今仍引起科学界的兴趣,研究人员使用纳米技术来增强自愈材料的有效性。 纳米颗粒可以分散在整个材料(如聚合物),穿透裂缝,并帮助启动自我修复过程。本文讨论了自愈纳米颗粒的广泛应用。 自愈纳米粒子的一般性质和机理 在聚合物中加入纳米材料和纳米结构可以提供丰富的官能团、大的表面积和独特的特性(导热性、导电性和生物性)来帮助愈合过程。 纳米技术也有助于理解潜在的微和纳米级聚合物链的相互作用。这些信息有助于研究人员设计出具有多种应用的更先进的自愈聚合物。例如,科学家已经开发了一种利用环氧树脂、聚氨酯、橡胶和聚甲基丙烯酸甲酯的自愈合碳纳米管纳米复合材料。 自愈过程的有效性取决于纳米颗粒的类型、大小和形状。自愈合聚合物/碳纳米管的效率取决于其他因素: 矩阵的修改 纳米管的功能 处理方案 矩阵-纳米粒子相互作用或兼容性 2006年,马萨诸塞大学阿姆赫斯特分校材料研究科学与工程中心的托马斯·罗素博士指出,这些材料可以修复任何形成的裂缝,且几乎不受外部侵入。 纳米膜还可以促进自愈特性。一些常用的纳米膜是纳米二氧化硅、石墨烯、碳纳米管(CNTs)、陶瓷氧化物和纳米纤维素。 研究人员报道,纤维素纳米晶须的加入使聚乙烯醇的抗拉强度提高了60倍。类似地,具有高导热性的石墨烯和碳纳米管等导电纳米管被用作纳米级加热器。因此,纳米颗粒被用来增强聚合物基质内的自愈机制。 自愈合纳米颗粒的应用 聚合物电损伤的自我修复 电网需要耐用、稳定和强介电聚合物来适当地绝缘导线。 高的局部电场导致电树,导致介电材料的结构破坏和导电退化,以及大规模的设备故障。 科学家们已经证明,在热塑性聚合物中加入超顺磁性纳米粒子(小于体积百分比的0.1%)可以帮助修复被电树刺伤的部位。这一措施也将确保绝缘性能的恢复。 在振荡磁场的影响下,纳米粒子移动到电树上并产生更高的局部温度。这将导致修复聚合物中的电树通道。这种方法也增加了电子和能源应用的电力电缆的耐久性。 乳腺癌术后复发的预防 水凝胶在1960年首次被报道。水凝胶是由交联的亲水聚合物组成的三维网络,它在水中膨胀。由于分离的聚合物链的物理和化学交联,它可以在不破坏结构的情况下保持大量的水。 水凝胶是一种非常重要的材料,特别是在肿瘤治疗和再生医学方面。这是因为它具有调节组织微环境的仿生能力。 利用席夫碱基连接,科学家们开发了一种基于石墨烯纳米颗粒的新型自愈合水凝胶。该石墨烯纳米颗粒基自愈水凝胶由硫酸软骨素、多醛和支化聚乙烯亚胺共轭石墨烯组成。 石墨烯纳米颗粒自愈水凝胶具有100%的自愈性,力学性能得到改善。一项小鼠乳腺癌术后复发的体外研究显示了基于石墨烯纳米颗粒的自愈合水凝胶的潜力。 自愈的电池 锂离子可充电电池通常使用碳基负极。这些电池容易形成枝晶,枝晶是在一个电极上发育并向另一个方向生长的小型金属结构。它们可能会引起短路甚至火灾。 尽管硅电极每单位体积能提供更高的能量,但由于充电周期的膨胀和收缩,它经常会崩溃。 伊利诺伊大学的研究人员开发了一种自愈电极,利用嵌入微胶囊的导电物质。电极的膨胀导致微胶囊破裂,使裂纹填充材料分散。 自我修复DNA纳米结构 科学家最近设计了具有自愈特性的DNA纳米结构。这些纳米结构可用于药物传递和诊断。然而,在应用DNA纳米结构之前,首先要做的是开发一种对抗核酸酶攻击的策略,即找到保护或修复受损DNA分子的方法。 纳米结构通常在24小时内在体温下的血清中被破坏。研究人员已经创造了各种策略,如dna -纳米管来稳定血清中的纳米结构。在含有纳米管的血清中加入这些更小的DNA贴片可以修复受损的结构。 自愈合石墨烯基复合生物传感器 可穿戴电子传感器是一种功能强大的设备,有助于疾病的早期诊断,并有助于持续监测个人的健康状况。然而,这些可穿戴传感设备在与人体接触时,不可避免地会受到划伤和机械割伤,从而导致其故障。 在一项概念验证中,研究人员揭示了一种具有自愈特性的柔性纳米关节传感器的发展。他们报道了一种带有功能化金纳米颗粒薄膜的自我修复聚合物的修正提高了基底和传感薄膜的愈合效率。
  • 《用于纳米光子学的金纳米粒子的超薄超晶格》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-05-22
    • 物理化学研究所Matthias Karg教授的“Colloids and Nanooptics”小组提出了一种简单而精确的技术来开发高度有序的颗粒层。该小组正在使用具有水凝胶状结构的微小,柔软且可变形的球形聚合物珠粒。 水凝胶是水溶胀的三维网络。例如,我们熟悉这些结构,作为婴儿尿布中的超吸收剂,能够吸收大量液体。 在这些水凝胶珠子中,只有几纳米的微小金或银颗粒,Karg的团队在HHU中使用金属盐在还原过程中合成。 “我们可以非常精确地调整金颗粒的大小,因为水凝胶壳可渗透溶解的金属盐,从而允许金核连续过度生长。”这些核 - 壳颗粒的结构可以与樱桃的结构大致比较,其中硬核被软浆包围。然而,来自实验室的颗粒大约小十万倍。 然后,位于杜塞尔多夫的研究人员可以使用这些水凝胶珠的稀释溶液来生产薄单层。他们将珠子应用于水面,其中高度有序且色彩缤纷的闪光层自组装。它们将该层从水表面转移到玻璃基板上。这种转移使整个玻璃基板闪烁。 用电子显微镜观察该层显示出规则的六角形有序粒子阵列。 “这些是它们壳中的金颗粒,”博士生Kirsten Volk解释说,“我们发现它们排列在一个高度有序的层中。”确定层的颜色的是金颗粒:它们反射具有特定波长的可见光,这些波长会干扰并因此产生不同角度的不同颜色的印象。 “这些薄层对于光电子学非常有意义 - 即使用光传输和处理数据。也可以使用它们来构建小型激光器,”Karg教授解释说。这些纳米激光器的尺寸仅为纳米,因此构成了纳米光子学领域的关键技术。 在最近发表在ACS应用材料与接口杂志上的一项研究中,杜塞尔多夫的研究人员已经克服了这种纳米激光器的主要障碍。他们成功地通过入射光在金颗粒中产生了集体共振。这意味着金颗粒不会单独激发;相反,所有激发的粒子都在共振。这种集体共振是构建激光器的基本先决条件。发表的研究结果的特殊方面是,不仅可以非常容易地和大规模地创建颗粒层,它们也特别薄。 对于光电应用和纳米激光器,谐振模式必须在薄层中进一步放大。 Karg教授:“接下来我们将尝试通过掺杂发射器来进一步放大共振。从长远来看,这也可以让我们实现电动纳米激光器。” ——文章发布于2019年5月20日