《研究发现孟加拉湾缺氧区的扩张与加强将加速SAR11对硝酸盐的利用及氮损失》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-05-21
  • 近日,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究员夏晓敏团队解析了孟加拉湾缺氧区原核生物群落结构及其在氮循环过程中的作用,相关研究成果发表于美国微生物协会旗下期刊Microbiology Spectrum(《微生物学谱》)。2019级博士研究生顾博伟与副研究员刘甲星为论文共同第一作者,夏晓敏为论文通讯作者。   

    全球海洋缺氧区占据了30-50%的海洋氮损失,且缺氧区仍在不断扩张。不少研究已阐释了极度缺氧条件(anoxic,≤1 μM O2)对原核生物群落及生物地球化学循环过程的影响,但对氧气浓度略高于anoxic(~5 μM O2)的缺氧区(如孟加拉湾)认识还较少。该研究采用了流式细胞术、扩增子及宏基因组测序等方法,揭示了孟加拉湾缺氧区原核生物群落结构及其在氮循环过程中的作用。  

    该研究发现水体中束毛藻的沉降效率远大于聚球藻与原绿球藻,表明束毛藻藻华为孟加拉湾缺氧区提供了碳氮源。随着氧气浓度的降低,不仅原核生物群落组成发生改变,其功能也有所变化。相比于含氧量较高的Tara样品(≥60 μM O2)与孟加拉湾样品(20-60 μM O2),低含氧量区的孟加拉湾样品(5-20 μM O2)中存在更多的SAR11-nar序列(该基因负责将硝酸盐还原为亚硝酸盐),这表明缺氧区扩张后SAR11利用硝酸盐将更为普遍。

    目前,孟加拉湾缺氧区的亚硝态氮尚未通过反硝化作用还原为氮气,而是被Nitrospinae氧化为硝态氮累积起来。然而,如果孟加拉湾缺氧区的含氧量进一步下降,亚硝态氮通过反硝化作用还原为氮气的过程可能会加强,氮损失现象将逐步加剧。

    该研究由国家自然科学基金和南方海洋科学与工程广东省实验室(广州)项目等共同资助。

    相关论文信息:Bowei Gu, Jiaxing Liu, Shunyan Cheung, Ngai Hei Ernest Ho, Yehui Tan, Xiaomin Xia. 2022. Insights into prokaryotic community and its potential functions in nitrogen metabolism in the Bay of Bengal, a pronounced oxygen minimum zone. Microbiology spectrum, https://journals.asm.org/doi/10.1128/spectrum.00892-21

  • 原文来源:http://www.scsio.cas.cn/news/kydt/202205/t20220520_6451107.htmlhttp://www.scsio.cas.cn/news/kydt/202205/t20220520_6451107.htmlhttp://www.scsio.cas.cn/news/kydt/202205/t20220520_6451107.htmlhttp://www.scsio.cas.cn/news/kydt/202205/t20220520_6451107.htmlhttp://www.scsio.cas.cn/news/kydt/202205/t20220520_6451107.htmlhttp://www.scsio.cas.cn/news/kydt/202205/t20220520_6451107.html
相关报告
  • 《研究发现热带太平洋中层带富含亚硝酸盐氧化金属酶》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-05-25
    • 在海洋的主要最低氧气区域(OMZs)内发生了许多生物地球化学反应,但人们对这一问题的关注较少。氮是海洋生态系统中重要的营养物质,它的海洋含量和化学转化受控于微生物金属酶(这些金属酶可以催化化学变化)。这些反应在中深海层(约200-1000 m)中尤其重要,因为那里存在关键的氮反应。基于质谱的蛋白质组学测量可以直接检查OMZs中的这些酶催化剂的相对丰度。 本研究的作者在中太平洋进行的两次考察中揭示了从东部热带北太平洋延伸出来的OMZs的T型分布(2011年10月的Metzyme和2016年1月至2月的ProteOMZ)。Metzyme站确定了以200-400 m深度之间的12°N为中心的低氧水域,与东部热带北太平洋OMZ21向西延伸一致。随后的ProteOMZ探险跟随这些低氧水沿10°N向东向西延伸至140°W,并观察到了OMZs区域及整个过程中中深层水的低N,表明了整个东部热带北太平洋这些OMZ水域的连贯性,以及该地区独特的氮生物地球化学信号。研究者们通过大小分级的原位过滤系统在七个垂直剖面上收集自由生活的微生物生物量。并利用全局元蛋白质组学分析和目标元蛋白质组学分析两种技术来分析来自该谱图的77个样品。 研究发现亚硝酸盐氧化金属酶(一种来自硝化孢菌的富铁酶)是中深层海水中最丰富的微生物蛋白之一,每升分子超过600亿。估计的反应速率表明该酶不饱和,并且其高丰度提供了中深层海水潜在的催化能力,可以迅速氧化源自降解沉降的有机物质周期通量的亚硝酸盐。此外,考虑到该酶对铁的强烈需求,其高丰度代表了亚缺氧的中深层海水区内以前未被发现的微生物库。亚硝酸盐氧化金属酶也可能参与涉及氮和氧化还原敏感金属的其他反应。作者认为随着海洋持续脱氧,亚硝酸盐氧化金属酶的丰度和程度可能增加,并导致中深层海水增加对铁的更多需求和海洋生物地球化学循环的其他潜在变化。 (李亚清 编译)
  • 《孟加拉湾区域古植被和古季风研究取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2025-04-06
    • 近日,中国科学院南海海洋研究所研究员罗传秀研究团队在孟加拉湾区域古植被与古季风研究取得重要进展。该团队利用在孟加拉扇区获取的沉积岩芯,通过沉积物年代测试、孢粉分析等方法,重建了末次冰期以来孟加拉湾地区高分辨率的孢粉记录和古植被演化,揭示了轨道尺度和千年尺度上印度季风的变化和响应机制,为科学预测全球变暖背景下印度季风未来变化提供珍贵的历史资料。 印度夏季风(ISM)是全球主要的天气和气候系统之一,可影响世界超四分之一人口的社会经济,认识印度夏季风在自然条件下的演化规律有着重要的现实意义。孟加拉扇区作为全球最大的海底扇区之一,其巨量的沉积物为研究印度季风地质历史演化提供了绝佳条件。 海洋沉积物中的陆源孢粉是重要的古植被和古气候指标,能重建过去的海洋和陆地环境变化。以往研究由于不同季风指标(如石笋δ18O和上升流记录等)的多重影响因素,对晚第四纪不同时间尺度印度夏季风的变化仍存在争论。 本项研究通过分析孟加拉湾两个沉积岩芯(中扇YDY10和上扇E87-32B)的高分辨率孢粉记录,重建了轨道尺度和千年尺度上区域植被动态和印度夏季风降水变化。结果表明:轨道尺度上,指示印度夏季风降水的常绿阔叶植物孢粉(如大戟科、栲属)受北半球夏季太阳辐射量(SSI)变化的驱动,早-中全新世的印度夏季风降水多于海洋同位素阶段(MIS3 )。在千年尺度上,常绿阔叶林孢粉在海因里希事件(H1)、新仙女木(YD)和8.2 千年冷干事件期间,呈现典型的低值特征,与减弱的北大西洋经向翻转环流(AMOC)变化一致。而上扇岩芯的常绿阔叶孢粉百分比从末次盛冰期至早-中全新世逐渐增加,表明印度夏季风降水和河流输入增强。 该研究成果已发表在《第四纪科学评论》(Quaternary Science Reviews)期刊上,论文作者包括中国科学院南海海洋研究所博士生Ananna Rahman、研究员罗传秀、研究员向荣、副研究员万随、博士生Md Hafijur Rahaman Khan、中国科学院青海盐湖所研究员魏海成等。工作得到国家自然科学基金、中国科学院青海省盐湖地质与环境重点实验室奖励经费以及国家自然科学基金委共享航次的支持。 相关论文信息: Rahman A.,?Luo C., Khan?M. H.R., Wan S.,?Yang Y., Wei H., Xiang R., Zhang L., Liu J.,?Su?X.,? Huang Y.,2025. Evolution of Indian monsoon precipitation and vegetation dynamics in the Bay of Bengal region since the last glacial period. Quaternary Science Reviews 356, 109314. 文章链接:https://doi.org/10.1016/j.quascirev.2025.109314