《BioRxiv,3月31日,Computational Design of Peptides to Block Binding of the SARS-CoV-2 Spike Protein to Human ACE2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-04-01
  • Computational Design of Peptides to Block Binding of the SARS-CoV-2 Spike Protein to Human ACE2

    Xiaoqiang Huang, Robin Pearce, Yang Zhang

    doi: https://doi.org/10.1101/2020.03.28.013607

    Abstract

    The outbreak of COVID-19 has now become a global pandemic and it continues to spread rapidly worldwide, severely threatening lives and economic stability. Making the problem worse, there is no specific antiviral drug that can be used to treat COVID-19 to date. SARS-CoV-2 initiates its entry into human cells by binding to angiotensin-converting enzyme 2 (hACE2) via the receptor binding domain (RBD) of its spike protein. Therefore, molecules that can block SARS-CoV-2 from binding to hACE2 may potentially prevent the virus from entering human cells and serve as an effective antiviral drug. Based on this idea, we designed a series of peptides that can strongly bind to SARS-CoV-2 RBD in computational experiments.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.03.28.013607v1
相关报告
  • 《BioRxiv,3月12日,The SARS-CoV-2 exerts a distinctive strategy for interacting with the ACE2 human receptor》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-13
    • The SARS-CoV-2 exerts a distinctive strategy for interacting with the ACE2 human receptor Esther S Brielle, Dina Schneidman, Michal Linial doi: https://doi.org/10.1101/2020.03.10.986398 Abstract The COVID-19 disease has plagued over 110 countries and has resulted in over 4,000 deaths within 10 weeks. We compare the interaction between the human ACE2 receptor and the SARS-CoV-2 spike protein with that of other pathogenic coronaviruses using molecular dynamics simulations. SARS-CoV, SARS-CoV-2, and HCoV-NL63 recognize ACE2 as the natural receptor but present a distinct binding interface to ACE2 and a different network of residue-residue contacts. SARS-CoV and SARS-CoV-2 have comparable binding affinities achieved by balancing energetics and dynamics. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《Science,3月27日,Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-27
    • Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 Renhong Yan1,2, Yuanyuan Zhang1,2,*, Yaning Li3,*, Lu Xia1,2, Yingying Guo1,2, Qiang Zhou1,2,† See all authors and affiliations Science 27 Mar 2020: Vol. 367, Issue 6485, pp. 1444-1448 DOI: 10.1126/science.abb2762 Abstract Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for severe acute respiratory syndrome–coronavirus (SARS-CoV) and the new coronavirus (SARS-CoV-2) that is causing the serious coronavirus disease 2019 (COVID-19) epidemic. Here, we present cryo–electron microscopy structures of full-length human ACE2 in the presence of the neutral amino acid transporter B0AT1 with or without the receptor binding domain (RBD) of the surface spike glycoprotein (S protein) of SARS-CoV-2, both at an overall resolution of 2.9 angstroms, with a local resolution of 3.5 angstroms at the ACE2-RBD interface. The ACE2-B0AT1 complex is assembled as a dimer of heterodimers, with the collectrin-like domain of ACE2 mediating homodimerization. The RBD is recognized by the extracellular peptidase domain of ACE2 mainly through polar residues. These findings provide important insights into the molecular basis for coronavirus recognition and infection.