《509公里!我科学家创造光纤量子通信新纪录》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-03-04
  • 3日,记者从济南量子技术研究院获悉,继首次实验验证了远距离双场量子密钥分发可行性,在300公里真实环境的光纤中实现了双场量子密钥分发实验后,济南量子技术研究院王向斌教授、刘洋研究员与中国科学技术大学潘建伟院士团队再次合作,实现了509公里真实环境光纤的双场量子密钥分发(TF-QKD)。相关成果已于近日在线发表在国际期刊《物理评论快报》上,王向斌教授和张强教授为论文共同通讯作者。该成果成功创造了量子密钥分发最远传输距离新的世界纪录。

      在量子密钥分发(QKD)的长距离实际应用中,信道损耗是最严重的限制因素。TF-QKD利用单光子干涉作为有效探测事件,使安全成码率随信道衰减的平方根线性下降,甚至可以在无中继的情形下轻松突破QKD成码率线性界限。然而,TF-QKD的实施条件相当苛刻,要求两个远程独立激光器的单光子级干涉,同时需要通过单光子探测结果实现长距离光纤链路相对相位快速漂移的精准估计。

      该成果理论方面基于王向斌提出的“发送—不发送”双场量子密钥分发协议,大幅提高了系统对相位噪声的容忍能力;实验方面张强团队采用了时频传输技术,将两个独立远程激光器的波长锁定为相同,并利用附加相位参考光来估计光纤的相对相位快速漂移,确保了测量器件无关的安全属性。最终在实验室内将QKD安全成码距离成功拓展至509公里,打破了传统无中继QKD所限定的绝对理论成码率极限。同时,与其他双场QKD实验相比,该研究在安全性上拥有独特优势:既是测量设备无关的,又充分考虑了有限码长下的安全性。如果将系统重复频率升级至京沪干线等远距离量子通信网络中采用的1GHz,在300公里处,成码率可达5kbps,这将大量减少骨干光纤量子通信网络中的可信中继数量,大幅提升光纤量子保密通信网络的安全性。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2020-03/04/content_440723.htm?div=-1
相关报告
  • 《奥地利科学家创下量子纠缠新纪录》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-04-17
    • 据美国每日科学网站近日报道,奥地利科学家最近在量子纠缠系统领域创下新记录:成功实现了20量子比特系统内受控的多粒子纠缠。研究人员在3个、4个和5个量子比特的所有邻组间检测到了真正的多粒子纠缠。新进展有望应用于量子模拟或量子信息处理等领域。 包括通用量子计算机在内的量子系统需要大量量子比特,才能充分利用量子物理学的优势,因此,物理学家一直希望获得由更多量子比特组成的纠缠系统。2011年,物理学家首次将14个可寻址的量子比特纠缠在一起。现在,由奥地利科学院量子光学和量子信息研究所(IQOQI)的本·兰尼恩等领导的研究小组,首次实现了20量子比特系统内受控的多粒子纠缠。 在最新研究中,该团队使用激光,让20个钙原子在离子阱实验中相互纠缠,并对该系统内多粒子纠缠的动态扩展进行了观察。兰尼恩说:“粒子首先两两纠缠,通过我们研发的最新方法,我们可以证明,纠缠进一步扩散到所有相邻的粒子三联体、大多数四联体和几个五联体中。” 最新研究第一作者尼古拉·福瑞斯强调说:“我们已经检测到很多量子系统(包括超冷气体)内大量粒子之间的纠缠,但最新实验能寻址并读出每个量子比特。因此,它适用于量子模拟或量子信息处理等特定应用领域。” 研究团队希望进一步增加实验中量子比特的数量,“我们的中期目标是50个粒子,这可以帮助我们解决目前最好的超级计算机也无法破解的问题”。他们还计划优化方法,以检测更广泛的多粒子纠缠。 最新研究获得了奥地利科学基金FWF和欧盟等机构的资助,结果发表于最新一期《物理评论X》。
  • 《俄科学家研制远程安全量子通信系统》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2016-04-15
    • 来自俄罗斯圣彼得堡信息技术机械与光学大学(ITMO)的科学家团队已经提出了一种新的方法来构建安全数据交换的量子通信系统的。这套以研究结果为基础的实验装置能够发送距离250公里以上的单光子量子信号,这与其它尖端类似物不分上下。 与基于算法的加密不同,利用量子物理的基本规律来保护信息的系统,将来可以使数据传输完全不受黑客的攻击。量子信道的信息是由单光子来承载的,一旦窃听者试图拦截,它们就会发生不可逆转地的改变。因此,合法的用户就会立即知道任何种类的干预。 现在研究人员的使命就是创造一个完整的量子密码系统,这将同时产生分发量子密钥和传输有用的数据。