《科学家开发出在室温下操作的极化激光纳米激光器》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2019-05-22
  • 室温极化子纳米激光器以及几个相关的研究成果已被证明,涉及纳米尺度的极化子物理以及量子信息系统中的应用等主题。 该研究发表在Science Advances杂志上。

    DGIST于5月8日宣布,在GIST的Seong-Ju Park教授和宾夕法尼亚大学的Ritesh Agarwal教授的合作下,由Chang-Hee Cho教授在新兴材料科学系开发了室温下使用的极化激光纳米激光器。 。当通过产生电子 - 空穴对(激子)的库仑束缚状态激发材料与光子强烈地相互作用时,形成激子 - 极化子的宏观量子态,其接收光和物质的性质,从而产生非常的能量高效的相干光源,称为“极化激光器”。极化激光器作为下一代激光技术备受关注,因为它可以在超低功率下工作。然而,由于难以控制激子的热稳定性,特别是在纳米级器件中,其发展受到限制。

    为了克服这些限制,研究小组使用了“量子阱”,这是一个容易落入电子的空间。研究员DGIST的Jang-Won Kang博士在纳米结构半导体的侧壁上产生了量子阱,并且即使在室温下也能够保持热稳定的激子,否则它们仅在非常低的温度下才能稳定。

    此外,通过加强纳米结构半导体内的激子和光的耦合,量子阱结构有助于形成比以前更有效和稳定的激子 - 极化子状态。这为Chang-Hee Cho教授团队开发的极化子纳米激光器奠定了坚实的基础,该激光器在室温下稳定,并且仅在现有纳米激光器的1/10功率下工作。

    Cho教授说:“由于新的纳米结构半导体可以提高激子的性质,从而提高激子 - 极化子,我们能够开发出能够在室温下使用这种技术工作的极化子纳米激光器。特别是,我们非常高兴,因为我们现在可以建立一个平台来研究室温下激子 - 极化子相关的物理现象。“

    ——文章发布于2019年5月20日

相关报告
  • 《中国科学家开发177纳米真空紫外激光器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2021-02-01
    • 如果真空紫外激光可以聚焦成一个小束点,将可用于研究介观材料和结构,并使制造纳米物体具有更加的精度。 为了实现这一目标,中国科学家发明了一种177纳米的VUV激光系统,可以在长焦距处获得亚微米焦点。该系统可以重新配置用于低成本的角度分辨光电发射光谱,并可能推动凝聚态物理研究。 在《光科学与应用》(Light Science & Applications)发表的一项研究成果显示,研究人员利用无球像差的带板开发了一种177 nm VUV激光扫描光电发射显微镜系统,该系统在长焦距(~45 mm)下具有<1μm的焦斑。 基于这种显微镜,他们还建立了一个离轴荧光检测平台,在揭示材料的细微特征方面表现出优于传统激光系统的能力。 与目前用于ARPES的具有空间分辨率的DUV激光源相比,177 nm VUV激光源可以帮助ARPES测量覆盖更大的动量空间,具有更好的能量分辨率。 该VUV激光系统具有超长焦距(~45 mm)、亚微米空间分辨率(~760 nm)、超高能量分辨率(~0.3 meV)和超高亮度(~355 MWm-2)。可直接应用于光电发射电子显微镜(PEEM)、角度分辨光电子能谱仪(ARPES)、深紫外激光拉曼能谱仪等科研仪器。 目前,该系统已与上海理工大学的ARPES连接,揭示了各种新型量子材料的精细能带特征,如准一维拓扑超导体TaSe3、磁性拓扑绝缘体(MnBi2Te4)(Bi2Te3)m族等。
  • 《新品 | 可以发出颜色可控光的激光器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-11-11
    • 图:网状激光器对泵浦的光谱灵敏度(b)。具有互连染料掺杂聚合物纳米纤维的光子网络的荧光图像。并以几个链接上的图形拓扑(边缘为蓝色线,节点为橙色点)为例(a) 研究人员已经创建了一个基于网络的激光系统,就像蜘蛛网一样,可以精确控制,产生不同颜色的光。 该系统由Imperial College London的研究人员与意大利和瑞士的合作伙伴领导的团队发明,可用于新的传感和计算应用。该团队已经与欧洲各地的研究和工业合作伙伴合作,探索机器学习的应用。 在传统的激光器中,光在两个反射镜之间反弹,反射镜的材料将光放大,直到达到一定的阈值。激光是以窄光束产生的,在长距离上是稳定的。然而,光通常只以一种频率产生,对应于单一颜色。 网络激光器的工作方式不同,由纳米级光纤网制成,这些光纤融合在一起形成网状网络。光沿着纤维传播,并以这种方式进行干涉,从而同时产生数百种颜色。然而,颜色以复杂的方式混合,并在所有方向上随机发射。 相关研究发表在Nature Communications,科学家们开发了一种精确控制网络激光器的方法,使其一次只发射单一颜色或颜色组合。该系统通过在网络激光器上照射独特的“照明图案”来工作,每个精确的图案都会产生不同的激光颜色或颜色组合。 基于芯片的应用 照明图案是使用数字微镜装置(DMD)创建的,DMD是一种由计算机控制的装置,有数千个镜子。DMD通过为特定激光颜色选择最佳图案的算法进行优化。 该团队表示,新的网络激光系统可以有很多应用,特别是可以集成到芯片中。例如,它们可以用作高度安全的硬件密钥,其中照明图案成为以激光光谱形式生成密码的安全密钥。 因为激光器对正确的照明模式也非常敏感,所以网络激光器可以用作传感器,可以跟踪周围表面的微小变化。 该系统是帝国物理系和数学系五年合作的成果。研究团队根据物理模型和理论制作了优化照明模式的工具,并在实践中进行了演示。 数学和物理结合在一起 来自伦敦帝国理工学院物理系的合著者Riccardo Sapienza教授表示,“我们已经将网络理论的数学与激光科学相结合,以训练这些复杂的激光。我们相信这将是芯片光处理的核心,我们现在正在将其作为机器学习硬件进行测试。” 来自帝国大学数学系的Mauricio Barahona教授表示:“这是一个例子,我们看到数学和物理结合在一起,展示了网络的特性如何影响和帮助控制激光发射过程。下一个重大挑战是设计网络和照明模式,以控制激光的时间分布,并对其中的信息进行编码。"