《广州地化所二次离子质谱实验室成功开发一种超高真空样品靶制备方法》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2018-09-03
  • 二次离子质谱仪( SIMS )具有高精度微区原位分析能力,在进行矿物中挥发份尤其是水含量分析时,样品腔真空度将直接影响其检测限。仪器自身的抽气能力及样品靶的释气是影响样品腔真空度的关键因素。为获得超高真空,目前较常用的制靶方法是将矿物测试面提前打磨抛光,再将其压入铟表面。该方法对于大颗粒矿物的制备较简便,而对于粒度非常细小的单矿物,将矿物压入铟靶中时易使矿物破碎,因硬度低难以进行打磨抛光,所以不易获得平整的样品靶面,直接影响分析。

      为解决以上难题,广州地球化学研究所 SIMS 实验室张万峰和夏小平研究员等人进行了以下优化:

      1、 提出了一种全自动的液氮加注装置,该装置能高效的发挥冷泵的作用,是一套轻型且自动控制的液氮加注装置,使样品腔处于较稳定状态,是一项为二次离子质谱仪长时间、稳定及自动化工作起到至关重要的改进。该技术已获中国发明专利,专利号: 201610978411.7 。

      2、 提出了一种适用于 SIMS 超高真空的单矿物的制靶技术,采用合金材料代替环氧树脂进行浇筑。该材料易浇筑,可打磨抛光,又不会污染样品、释气率极低,能有效的提高样品腔真空度。适用于样品的水含量及氧同位素分析。 该研究成果以 封面文章 发表于最新一期的 Journal of Analytical atomic spectrometry 。

     基于以上改进,实验结果表明利用合金材料能有效对不同粒径的样品进行制靶。在使用合金样品靶和自动化液氮制冷装置后,真空度从 1.2×10 -8 mbar 优化至 1.9×10 -9 mbar 。水含量分析结果表明,样品腔中背景低于 10ppm 。可满足无水矿物水含量分析。

      该成果受广州市科技项目( No.201607020029 )、国家自然科学基金( No. 41673010 和 41603045 )和广州地球化学研究所仪器功能开发项目( GIG-GNKF-201601 )的联合资助,成果以封面文章发表于 Journal of Analytical Atomic Spectrometry 上。

      论文信息:

      Wanfeng Zhang, Xiaoping Xia, Yanqiang Zhang, Touping Peng and Qing Yang. A novel sample preparation method for ultra-high vacuum (UHV) secondary ion mass spectrometry (SIMS) analysis. Journal of Analytical Atomic Spectrometry , 2018 , DOI: 10.1039/c8ja00087e

      原文链接:

      http://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00087e#!divAbstract

相关报告
  • 《Nat Biotechnol:开发出一种新的DNA合成方法》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-02
    • 在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和联合生物能源研究所的研究人员发明了一种合成DNA的新方法。这种方法有望更容易地更快速地合成DNA,并不需要使用毒性化学物,而且可能是更准确的。鉴于具有更高的准确性,这种技术能够产生比当前的方法长10倍的DNA链。这些研究人员说,这种易用性可能会导致研究实验室中普遍存在的“DNA打印机”,类似于如今许多车间中的三维打印机。相关研究结果于2018年6月18日在线发表在Nature Biotechnology期刊上,论文标题为“De novo DNA synthesis using polymerase-nucleotide conjugates”。加州大学伯克利分校研究生Dan Arlow和德国达姆施塔特工业大学博士生Sebastian Palluk在这项研究中详细描述了这种方法。 Arlow说,“如果你是一名机械工程师,在你的商店里有一台3D打印机真的很棒,它可以在一夜之间打印出零件,这样你就可以在第二天早上测试它。如果你是一名研究人员或生物工程师,而且你有一种简化DNA合成的仪器,即'DNA打印机',那么你就能够更快地测试你的想法并尝试更多的新想法。我认为这将带来很多创新。” 联合生物能源研究所首席执行官、劳伦斯伯克利国家实验室资深科学家和加州大学伯克利分校化学与生物分子工程教授Jay Keasling说,“我个人认为Arlow和Palluk开发出的这种新方法可能会引发我们制造DNA方法的变革。” Palluk在Keithling实验室与Arlow一起研究DNA合成问题。作为合成生物学领域的先驱,Keasling和联合生物能源研究所的科学家们致力于将基因导入到微生物(主要是酵母和细菌)中来可持续地产生产品---药物、燃料,工业化学品,同时产生最少的毒性副产物和消耗最少的能源。 合成DNA是一项不断发展的业务,这是因为公司订购定制的基因,这样它们就能够在培养微生物的大缸中产生生物药物、工业酶或有用的化学物质。科学家们购买合成基因,并将它们导入到植物或动物体内或者尝试着开展新的基于CRISPR的疾病治疗方法。 一些科学家甚至提出将信息存储在DNA中,就像如今将数字数据存储在计算机硬盘中一样,这是因为一克DNA在理论上的存储容量相当于5000万张DVD,并且应当会在数百年内保持稳定。然而,这意味着要合成的DNA链数量比目前在生物技术行业中使用的DNA链数量大得多。 所有这些应用都要求这种DNA合成过程在数百万甚至数十亿个DNA分子拷贝中忠实地产生所需的核苷酸或碱基---DNA的构成单元(building block)---序列。 目前的DNA合成方法可追溯到1981年并使用来自有机化学实验室的技术,仅限于直接产生大约长200个碱基的寡核苷酸,这是因为随着合成长度的增加,这个过程中出现的不可避免的错误导致正确序列的产率非常低。为了组装一个小的基因,科学家们必须逐段合成它,每段大约长200个碱基,然后将这些片段拼接在一起。这很费时,通常需要多次尝试,而且有时完全失败。 此外,如果从Twist Biosciences公司和Integrated DNA Technologies(IDT)公司等合成公司订购,那么合成一个大约长1500个碱基的小基因的周转时间可能为两周,需要花费300美元,这就限制了科学家们能够承担得起的尝试进行基因调整的数量和他们开始能够开展实验的速度。 Keasling、Arlow和Palluk等合成生物学家经常需要一次性地将十几种不同的基因插入一种微生物中,使其产生所需的化学物质,然而每个基因都存在它自己的合成问题。 Palluk说,“作为一名德国学生,我参加了国际合成生物学竞赛iGEM,在那里我们试图让大肠杆菌降解塑料废物。但是我很快就意识到大部分研究时间都用于合成DNA,而不是开展实验来观察所获得的工程细胞是否能够降解塑料。这真地促使我研究DNA合成过程。” 化学DNA合成还需要使用特定类型的有毒性的活化DNA构成单元,并重复使用石油衍生溶剂进行清洗。Arlow说,如今,废物处理的问题和这种合成过程对湿度非常敏感使得它非常挑剔的事实都成为科学家们抛弃他们的个人寡核苷酸合成仪并将他们的DNA交给专业公司进行合成的理由。 借鉴免疫系统 这项新的技术依赖于在免疫系统细胞中发现的一种DNA合成酶,这种DNA合成酶天然地能够将核苷酸添加到水中的现有DNA分子上。这种技术有望提高精确度,并可能让DNA链的合成时间延长10倍,从而能够合成出长数千个碱基的DNA分子---一个中等基因的大小。 Palluk说,“我们已想出一种合成DNA的新方法,它利用了大自然用来制造DNA的机器。这种方法很有前途,因为酶已进化了数百万年才能完成这种精确的化学反应。” 细胞通常不会从头开始合成DNA;它们主要都是在已存在于它们中的DNA模板的基础上,利用大量不同的聚合酶进行DNA复制。然而,在20世纪60年代,科学家们发现了一种不寻常的聚合酶,它不依赖于现有的DNA模板,而是随机地将核苷酸添加到制造用于免疫系统中的抗体的基因上。这种被称作末端脱氧核苷酸转移酶(terminal deoxynucleotidyl transferase, TdT)的酶在这些基因中产生随机变异,从而使得产生的抗体蛋白能更好地靶向前所未见的入侵者。 Paldk说,TdT同等地很好地添加所有四种DNA核苷酸,不会发生能够破坏所形成的DNA分子的副产物,并且它的添加速度是非常快的,如果让它随心所欲地发挥作用的话,它每分钟可将DNA延长大约200个碱基。 多年来,许多实验室都已尝试着利用这种酶来合成所需的DNA序列,但这种酶是很难控制的。一个关键要求就是弄清楚如何让这种酶在添加一个核苷酸后停下来,这样就能够一次添加一个碱基从而合成出所需的序列。所有之前的方案都是试图通过使用携带着阻止多次添加的特殊阻断基团的修饰核苷酸来实现这种控制。在给DNA分子添加一个受到阻断的核苷酸后,这些阻断基团就被移除,从而使得接下来的添加成为可能。 Palluk说,“这些方法与下一代测序(Next-Generation Sequencing, NGS)技术有很多共同之处”,他指的是用于读取基因序列的最先进技术,其工作原理是通过使用模板依赖性聚合酶依次地添加发出不同颜色荧光的阻断核苷酸,从而指出添加了这四种可能的碱基中的哪一种。尽管这些用于测序的DNA复制酶能够容纳添加到DNA分子上的核苷酸携带的阻断基团,但是TdT却不能做到这一点。当一个核苷酸正确地定位用于DNA合成反应时,TdT的活性位点太紧而不适合容纳它携带的阻断基团。 Arlow的想法是将一个未携带阻断基团的核苷酸牢固地连接到TdT上,这样在将这个核苷酸添加到延伸中的DNA分子后,这种酶仍然保持连接并且保护DNA链的末端免受进一步的核苷酸添加。在DNA分子延伸后,他们切断TdT与这个添加到DNA链上的核苷酸之间的连接物,将这种酶释放出来,并让DNA链的末端重新暴露出来以便接受进一步的核苷酸添加。 在他们的第一次试验---使用经过改造的TdT酶在10个循环中产生长10个碱基的寡核苷酸---中,这些研究人员证实他们的更快更简单的技术在每一步合成中几乎与当前的技术一样准确。 Arlow说,“当我们利用NGS技术分析合成产物时,我们能够确定大约80%的分子具有所需的长10个碱基的序列。这意味着,平均每个步骤的产率大约为98%,这对解决这个存在了50多年的问题的第一次尝试来说并不算太坏。我们希望达到99.9%的保真度,以便合成出全长DNA。” Palluk说,一旦达到99.9%的保真度,他们就能够一次性合成一种长1000个碱基的分子,产率在35%以上,对目前的化学合成技术来说,这是完全不可能实现的。 他说,“通过直接合成更长的DNA分子,将寡核苷酸拼接在一起的必要性以及由这个繁琐的过程产生的限制可能就会减少。我们的梦想是直接合成基因长度的序列,并在几天内将它们提供给科学家们。” Arlow说“我们希望这种技术将使得生物工程师更容易更快地弄清楚如何通过生物手段制造出有用的产品,这可能导致以一种需要更少石油的方式更可持续地生产我们在世界上所依赖的东西,包括服装、燃料和食品。”
  • 《苏州纳米所李清文团队成功实现>7GPa碳纳米管纤维制备》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-10-18
    •   碳纳米管纤维(Carbon nanotube fiber, CNTF)是由大量一维碳纳米管组装而成的宏观纤维材料,其碳纳米管组装单元(CNT)在理论上具备超高的力学与电学性能,使得碳纳米管纤维展现出兼具金属纤维、高分子纤维及碳纤维的综合性优势。在多种碳纳米管纤维常用制备方法中,浮动催化直接纺丝法(floating catalysis chemical vapor deposition, FCCVD)由于具有极高的制备效率,被认为是碳纳米管纤维宏量制备的关键技术。然而,该方法制备的碳纳米管纤维存在着大量的碳纳米管弯曲、缠结及管间孔隙等缺陷,限制了纤维性能的充分发挥以及实际应用。为此,研究人员通过多种后处理手段进行浮动催化碳纳米管纤维的性能增强研究。总体而言,现有后处理手段往往只着重关注纤维中的某一类型缺陷,且关于纤维微观结构变化对纤维载荷传递与性能的影响机理尚不明晰,阻碍了碳纳米管纤维性能的进一步提升。因此,发展出可同时实现纤维再取向及致密化的综合后处理技术,已然成为高性能碳纳米管纤维研究与应用领域的关键。   本工作中,中国科学院苏州纳米所李清文团队开发出一种针对浮动催化法碳纳米管纤维的新型综合后处理增强策略,主要包括氯磺酸辅助牵伸取向与辊压致密,可实现碳纳米管纤维中碳纳米管取向度及管间堆积致密度的同步提升。此外,通过纤维表面及断面的高分辨SEM、广角X射线散射(WAXS)、偏振Raman光谱及BET分析等多种微观结构表征手段,揭示出纤维微观结构演变对纤维力电性能的影响及增强机理。研究表明,纤维内碳纳米管弯曲、缠结及管间孔隙等缺陷在后处理过程中得到显著降低,对纤维性能提升十分有利。进一步地,通过后处理参数优化,得到了综合性能优异的碳纳米管纤维,其中,纤维拉伸强度达到7.67 GPa,弹性模量达到230 GPa,电导率提升至4.36×106 S/m。   浮动催化碳纳米管纤维的多步后处理工艺,首先为氯磺酸辅助牵伸取向过程(图1a),碳纳米管纤维原丝进入氯磺酸中,发生质子化膨胀从而降低管间范德华作用,经过牵伸取向作用及凝固浴中凝固收缩致密作用,然后进行热退火去除纤维中的杂质(图1b),最后进行辊压致密化(图1c),从而实现碳纳米管纤维取向度和致密度的同步提升。   多步后处理过程中碳纳米管纤维微观结构发现显著变化,纤维表面及断面的SEM和纤维断面TEM表征结果显示,氯磺酸辅助牵伸可提升纤维内碳纳米管的取向度和排列致密度,而辊压致密化处理可进一步提升纤维致密度。  图3a-c中通过密度和BET分析表征了纤维致密度及孔隙缺陷的变化情况,显示氯磺酸辅助牵伸和辊压过程均有效降低了碳纳米管纤维中孔隙缺陷,提升了纤维致密性。图3d-h通过WAXS表征了纤维中碳纳米管取向性的变化情况,图3i偏振Raman表征验证了纤维取向度变化,结果均显示纤维取向度的提升主要来自氯磺酸辅助牵伸过程,而辊压过程则可进一步少量提升纤维的取向度。   图4为多步后处理过程中的不同牵伸率、牵伸速率、凝固浴成分及辊压速度条件对碳纳米管纤维力学拉伸性能的影响,从而获得了多步后处理过程的最佳处理条件,牵伸率为16%,牵伸速率为0.058 m/min,凝固浴采用二氯甲烷(DCM),辊压速率为0.5 cm/min。同时,研究团队也研究了不同处理条件对碳纳米管纤维导电性的影响。   经过处理条件优化,研究团队制备的高性能碳纳米管纤维具有极高的力学、电学性能,其拉伸强度达到7.67 GPa,弹性模量达到230 GPa,电导率达到4.36×106 S/m。与传统高性能纤维相比,该高性能碳纳米管纤维具有高强、高导电的综合性能优势,同时,碳纳米管纤维还展现出良好的可加工性和电热转化性能。总体而言,本工作中碳纳米管纤维的力学与电学性能均达到浮动催化碳纳米管纤维领域中的最高水平。相关工作以Carbon nanotube fibers with excellent mechanical and electrical properties by structural realigning and densification为题发表于Nano Research,中国科学院苏州纳米所吴昆杰副研究员、博士生牛宇涛及江西省纳米技术研究院博士后王彬为论文的共同第一作者,通讯作者为中国科学院苏州纳米所张永毅研究员、勇振中研究员,北京石墨烯研究院蹇木强研究员和中国科学院苏州纳米所李清文研究员。上述研究工作得到了国家重点研发计划、国家自然科学基金等项目的支持。