《Nat Biotechnol:开发出一种新的DNA合成方法》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-07-02
  • 在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和联合生物能源研究所的研究人员发明了一种合成DNA的新方法。这种方法有望更容易地更快速地合成DNA,并不需要使用毒性化学物,而且可能是更准确的。鉴于具有更高的准确性,这种技术能够产生比当前的方法长10倍的DNA链。这些研究人员说,这种易用性可能会导致研究实验室中普遍存在的“DNA打印机”,类似于如今许多车间中的三维打印机。相关研究结果于2018年6月18日在线发表在Nature Biotechnology期刊上,论文标题为“De novo DNA synthesis using polymerase-nucleotide conjugates”。加州大学伯克利分校研究生Dan Arlow和德国达姆施塔特工业大学博士生Sebastian Palluk在这项研究中详细描述了这种方法。

    Arlow说,“如果你是一名机械工程师,在你的商店里有一台3D打印机真的很棒,它可以在一夜之间打印出零件,这样你就可以在第二天早上测试它。如果你是一名研究人员或生物工程师,而且你有一种简化DNA合成的仪器,即'DNA打印机',那么你就能够更快地测试你的想法并尝试更多的新想法。我认为这将带来很多创新。”

    联合生物能源研究所首席执行官、劳伦斯伯克利国家实验室资深科学家和加州大学伯克利分校化学与生物分子工程教授Jay Keasling说,“我个人认为Arlow和Palluk开发出的这种新方法可能会引发我们制造DNA方法的变革。”

    Palluk在Keithling实验室与Arlow一起研究DNA合成问题。作为合成生物学领域的先驱,Keasling和联合生物能源研究所的科学家们致力于将基因导入到微生物(主要是酵母和细菌)中来可持续地产生产品---药物、燃料,工业化学品,同时产生最少的毒性副产物和消耗最少的能源。

    合成DNA是一项不断发展的业务,这是因为公司订购定制的基因,这样它们就能够在培养微生物的大缸中产生生物药物、工业酶或有用的化学物质。科学家们购买合成基因,并将它们导入到植物或动物体内或者尝试着开展新的基于CRISPR的疾病治疗方法。

    一些科学家甚至提出将信息存储在DNA中,就像如今将数字数据存储在计算机硬盘中一样,这是因为一克DNA在理论上的存储容量相当于5000万张DVD,并且应当会在数百年内保持稳定。然而,这意味着要合成的DNA链数量比目前在生物技术行业中使用的DNA链数量大得多。 所有这些应用都要求这种DNA合成过程在数百万甚至数十亿个DNA分子拷贝中忠实地产生所需的核苷酸或碱基---DNA的构成单元(building block)---序列。

    目前的DNA合成方法可追溯到1981年并使用来自有机化学实验室的技术,仅限于直接产生大约长200个碱基的寡核苷酸,这是因为随着合成长度的增加,这个过程中出现的不可避免的错误导致正确序列的产率非常低。为了组装一个小的基因,科学家们必须逐段合成它,每段大约长200个碱基,然后将这些片段拼接在一起。这很费时,通常需要多次尝试,而且有时完全失败。

    此外,如果从Twist Biosciences公司和Integrated DNA Technologies(IDT)公司等合成公司订购,那么合成一个大约长1500个碱基的小基因的周转时间可能为两周,需要花费300美元,这就限制了科学家们能够承担得起的尝试进行基因调整的数量和他们开始能够开展实验的速度。 Keasling、Arlow和Palluk等合成生物学家经常需要一次性地将十几种不同的基因插入一种微生物中,使其产生所需的化学物质,然而每个基因都存在它自己的合成问题。

    Palluk说,“作为一名德国学生,我参加了国际合成生物学竞赛iGEM,在那里我们试图让大肠杆菌降解塑料废物。但是我很快就意识到大部分研究时间都用于合成DNA,而不是开展实验来观察所获得的工程细胞是否能够降解塑料。这真地促使我研究DNA合成过程。”

    化学DNA合成还需要使用特定类型的有毒性的活化DNA构成单元,并重复使用石油衍生溶剂进行清洗。Arlow说,如今,废物处理的问题和这种合成过程对湿度非常敏感使得它非常挑剔的事实都成为科学家们抛弃他们的个人寡核苷酸合成仪并将他们的DNA交给专业公司进行合成的理由。

    借鉴免疫系统

    这项新的技术依赖于在免疫系统细胞中发现的一种DNA合成酶,这种DNA合成酶天然地能够将核苷酸添加到水中的现有DNA分子上。这种技术有望提高精确度,并可能让DNA链的合成时间延长10倍,从而能够合成出长数千个碱基的DNA分子---一个中等基因的大小。

    Palluk说,“我们已想出一种合成DNA的新方法,它利用了大自然用来制造DNA的机器。这种方法很有前途,因为酶已进化了数百万年才能完成这种精确的化学反应。”

    细胞通常不会从头开始合成DNA;它们主要都是在已存在于它们中的DNA模板的基础上,利用大量不同的聚合酶进行DNA复制。然而,在20世纪60年代,科学家们发现了一种不寻常的聚合酶,它不依赖于现有的DNA模板,而是随机地将核苷酸添加到制造用于免疫系统中的抗体的基因上。这种被称作末端脱氧核苷酸转移酶(terminal deoxynucleotidyl transferase, TdT)的酶在这些基因中产生随机变异,从而使得产生的抗体蛋白能更好地靶向前所未见的入侵者。

    Paldk说,TdT同等地很好地添加所有四种DNA核苷酸,不会发生能够破坏所形成的DNA分子的副产物,并且它的添加速度是非常快的,如果让它随心所欲地发挥作用的话,它每分钟可将DNA延长大约200个碱基。

    多年来,许多实验室都已尝试着利用这种酶来合成所需的DNA序列,但这种酶是很难控制的。一个关键要求就是弄清楚如何让这种酶在添加一个核苷酸后停下来,这样就能够一次添加一个碱基从而合成出所需的序列。所有之前的方案都是试图通过使用携带着阻止多次添加的特殊阻断基团的修饰核苷酸来实现这种控制。在给DNA分子添加一个受到阻断的核苷酸后,这些阻断基团就被移除,从而使得接下来的添加成为可能。

    Palluk说,“这些方法与下一代测序(Next-Generation Sequencing, NGS)技术有很多共同之处”,他指的是用于读取基因序列的最先进技术,其工作原理是通过使用模板依赖性聚合酶依次地添加发出不同颜色荧光的阻断核苷酸,从而指出添加了这四种可能的碱基中的哪一种。尽管这些用于测序的DNA复制酶能够容纳添加到DNA分子上的核苷酸携带的阻断基团,但是TdT却不能做到这一点。当一个核苷酸正确地定位用于DNA合成反应时,TdT的活性位点太紧而不适合容纳它携带的阻断基团。

    Arlow的想法是将一个未携带阻断基团的核苷酸牢固地连接到TdT上,这样在将这个核苷酸添加到延伸中的DNA分子后,这种酶仍然保持连接并且保护DNA链的末端免受进一步的核苷酸添加。在DNA分子延伸后,他们切断TdT与这个添加到DNA链上的核苷酸之间的连接物,将这种酶释放出来,并让DNA链的末端重新暴露出来以便接受进一步的核苷酸添加。

    在他们的第一次试验---使用经过改造的TdT酶在10个循环中产生长10个碱基的寡核苷酸---中,这些研究人员证实他们的更快更简单的技术在每一步合成中几乎与当前的技术一样准确。

    Arlow说,“当我们利用NGS技术分析合成产物时,我们能够确定大约80%的分子具有所需的长10个碱基的序列。这意味着,平均每个步骤的产率大约为98%,这对解决这个存在了50多年的问题的第一次尝试来说并不算太坏。我们希望达到99.9%的保真度,以便合成出全长DNA。”

    Palluk说,一旦达到99.9%的保真度,他们就能够一次性合成一种长1000个碱基的分子,产率在35%以上,对目前的化学合成技术来说,这是完全不可能实现的。

    他说,“通过直接合成更长的DNA分子,将寡核苷酸拼接在一起的必要性以及由这个繁琐的过程产生的限制可能就会减少。我们的梦想是直接合成基因长度的序列,并在几天内将它们提供给科学家们。”

    Arlow说“我们希望这种技术将使得生物工程师更容易更快地弄清楚如何通过生物手段制造出有用的产品,这可能导致以一种需要更少石油的方式更可持续地生产我们在世界上所依赖的东西,包括服装、燃料和食品。”

  • 原文来源:https://www.nature.com/articles/Nbt.4173
相关报告
  • 《开发出一种基因合成新方法---DropSynth》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2018-01-11
    • -在一项新的研究中,来自美国加州大学洛杉矶分校的研究人员发现一种利用一组由微阵列产生的寡核苷酸合成多个基因的方法。相关研究结果于2018年1月4日在线发表在Science期刊上,论文标题为“Multiplexed gene synthesis in emulsions for exploring protein functional landscapes”。在这篇论文中,他们描述他们的被称作DropSynth的方法,它的工作原理及其缺点。合成基因已经变得如此流行以至于如今有公司为了生存而开展基因合成业务,但它的费用仍然昂贵---当前的方法需要在每次产生小段DNA链之后将它们连接在一起。在这项新的研究中,这些研究人员开发出一锅合成法(one-pot approach)来合成基因,这可能会降低基因合成的成本。 当前,基因合成是通过使用产生DNA寡核苷酸的微阵列而开展的,随后必须将它们连接在一起。在这项新的研究中,这些研究人员在开始时也使用微阵列,不过他们给这些由微阵列产生的DNA寡核苷酸添加一段他们称之为“条形码(barcode)”的识别序列。接着,他们加入携带着互补性条形码的微珠,这些微珠能够从一组含有不同类型的DNA寡核苷酸中捕获与互补性条形码相匹配的DNA寡核苷酸。结果就是获得一堆微珠,每个微珠含有一小群匹配的相同类型的DNA寡核苷酸。他们随后利用旋涡混合器处理30秒,将这些DNA寡核苷酸和油混合在一起,从而将每个微珠(和它含有的一小群DNA寡核苷酸)包裹在乳滴(mulsion droplet)中。在此之后,酶诱导单个乳滴中的所有DNA寡核苷酸通过一种被称作聚合酶循环组装(polymerase cycling assembly)的过程连接在一起,从而合成出所需的基因序列。这些基因序列随后从乳液中提取出以备使用。这些研究人员指出这个基因合成方法要优于常规的方法,这是因为它产生一个基因库(gene pool)的成本与产生一个寡核苷酸库(oligonucleotide pool)的成本基本相同,即便有所增加,也不会增加很多。不幸的是,它有一个很大的缺点。他们指出,这种方法是“杂乱的”,这是因为它仅有大约5%的效率---几乎不足以用于制造过程。一个更加积极的方面是这种方法可能被用来以更低的成本构建用于各种用途的大型基因文库。它也可能用于研究工作,特别是那些涉及蛋白设计的研究工作。
  • 《Nat Biotechnol:科学家开发出一种制造甲型流感减毒活疫苗的新技术》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-14
    • 降低病毒感染性疾病(比如流感)影响的一种非常有前景的策略就是使用减毒活病毒来作为疫苗,然而,传统的减毒活疫苗的实用性往往受到了次优免疫原性、安全问题或繁琐的制造工艺和技术的限制,此外,由于病毒快速进化所导致的免疫逃逸或许会对传统的流感疫苗提出进一步的挑战。 近日,一篇发表在国际杂志Nature Biotechnology上题为“Generation of a live attenuated influenza A vaccine by proteolysis targeting”的研究报告中,来自中国科学院深圳先进技术研究院(SIAT)等机构的科学家们通过研究提出了一种新型的制造流感减毒活疫苗方法,即通过利用素质细胞中内源性的泛素-蛋白酶体系统来降解病毒蛋白,从而产生蛋白水解酶靶向性的嵌合甲型流感病毒(PROTAC,proteolysis-targeting chimeric)。 鉴于病毒的复制依赖于病毒编码的蛋白质,因此利用宿主细胞内的蛋白降解机器来操控病毒蛋白的稳定性或许就能作为一种潜在的方法来开启或关闭病毒的生命周期从而开发疫苗,因此,研究人员通过将有条件能够去除的蛋白酶体靶向性结构域(PTD)与流感病毒蛋白进行融合来设计蛋白酶体靶向性的嵌合体病毒(PROTAC virus)。 PTD能包含蛋白酶体靶向性的肽类及烟草蚀刻病毒裂解位点(TEVcs,tobacco etch virus cleavage site)接头,其能用来选择性地诱导目标病毒蛋白的蛋白酶体降解,然而,TEVcs接头或许能被烟草蚀刻病毒蛋白酶(TEVp)进行选择性地切割,从而将病毒蛋白与PTD分离,从而避免其被降解。因此,研究人员就能在表达TEVp的稳定细胞系中设计甲型流感病毒的基因组,这种细胞系能被工程化修饰用于病毒的生产,并能引入条件性可去除的PTD,从而就能产生完全具有感染性的PROTAC病毒,该病毒就能在感染后被宿主蛋白降解机器进行减毒修饰。 在小鼠和雪貂模型中,PROTAC病毒能被充分减毒,但同时也能够引起强大而广泛的体液、粘液和细胞免疫力,因此,其或许就能提供针对同源性和异源性病毒挑战的广泛保护力。最后研究者指出,这种PROTAC疫苗技术或许还能用来产生抵御多种其它病原体的减毒活疫苗。 原始出处: Si, L., Shen, Q., Li, J. et al. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat Biotechnol (2022). doi:10.1038/s41587-022-01381-4