《Science:在活细胞中构建出可编程的蛋白电路》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-09-28
  • 在一项新的研究中,来自美国加州理工学院的研究人员开发出一种蛋白生物工具包,这种生物工具包中的蛋白能够以不同的方式加以组装,从而对细胞中的新行为进行编程。作为一种概念验证,他们设计并构建出一种能够添加到在实验室培养皿中培养的人细胞内的蛋白电路(protein circuit),这种蛋白电路检测一种致癌基因在这些细胞中是否受到激活,如果确实如此的话,就导致它们自我摧毁。相关研究结果发表在2018年9月21日的Science期刊上,论文标题为“Programmable protein circuits in living cells”。论文通信作者为加州理工学院生物学与生物工程教授Michael Elowitz。论文第一作者为博士后研究员Xiaojing Gao和研究生Lucy Chong。

    合成生物学是研究如何对细胞进行改造而给它们赋予新的功能,从诸如定期开启和关闭之类的简单任务到诸如检测疾病状态并作出反应之类的更为复杂的程序。通常,这是通过编辑细胞的基因组来完成的,这种编辑会产生永久性修饰,当细胞发生复制时,这种永久性修饰会传递下去。根据Elowitz的说法,合成生物学的一个主要目标是从这种编辑方法转向不会产生永久性修饰的解决方案。就像使用可移动的胶带而不是超级胶水一样,合成生物学的目的是开发出能够注射的执行某种功能的治疗性“电路”,随后一旦完成任务,这些治疗性电路就会消失。在理想情况下,它们是高度针对性的;不是不加选择地影响所有细胞,这些治疗性电路能够检测何时在细胞水平上发生差错并相应地加以修复。

    如今,这些研究人员开发出一组蛋白构建模块(building block),它们能够以多种组合方式组合在一起,从而产生能够感知环境并采取相应行动的蛋白电路。这种蛋白生物工具包中的蛋白组分能够以不同的方式进行组合,从而执行从逻辑计算到信号加工的各种功能,最终构建出诊断特定细胞条件并作出反应的系统。

    为了展现这种蛋白电路的未来潜力,这些研究人员构建出一种能够在实验室培养皿中检测细胞是否携带致癌基因的蛋白电路,如果携带的话,则将这种细胞破坏掉。对于“正常”的细胞,这种蛋白电路将是无害的。

    Elowitz说,“生物医学面临的最大挑战之一就是特异性:你如何构建出一种仅影响特定细胞类型的治疗药物呢?随后,你如何以一种非常特异性的方式修饰这种细胞?这些任务对药物来说是充满挑战性的,但是生物电路(biological circuit)能够在这些任务中表现出色。蛋白电路能够经编程后感知许多类型的信息,加工它们,并以不同的方式作出反应。事实上,我们的细胞正常发挥作用的原因是我们的天然生物电路所具有的的不可思议的力量。”

    Gao说,“这项研究仅是原理论证,而且我们尚未在动物身上证实这些功能。然而,这个框架可能有助于我们过渡到使用可编程的基于细胞的疗法作为药物。”

    Chong说,“人们已在蛋白工程上方面开展了大量的研究工作,但是这是我们首次对以类似方式彼次之间进行调节或相互作用的蛋白进行改造,这允许将它们作为有用的构建模块进行组合。”

  • 原文来源:http://news.bioon.com/article/6727998.html
相关报告
  • 《Cell | 可编程控制哺乳动物细胞死亡的合成蛋白质电路》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-24
    • 2024年4月23日,霍华德·休斯医学研究所和加州理工学院(帕萨迪纳)的研究人员在Cell发表了题为Synthetic protein circuits for programmable control of mammalian cell death的文章。 细胞凋亡和裂解等天然细胞死亡途径具有双重作用:它们既能清除有害细胞,又能通过抑制或刺激炎症来调节免疫系统。能够在靶细胞中触发特定死亡程序的合成蛋白质回路同样可以清除有害细胞,同时适当调节免疫反应。然而,细胞会主动影响它们的死亡模式,以响应自然信号,因此控制死亡模式具有挑战性。 该研究介绍了受自然启发的 "同步凋亡 "回路,它通过蛋白水解来调节工程刽子手蛋白和哺乳动物细胞的死亡。这些电路可引导细胞死亡模式,对蛋白酶输入的组合做出反应,并选择性地消灭靶细胞。此外,同步凋亡回路还能在细胞间传播,为工程合成杀伤细胞提供了基础,这些细胞能在靶细胞中诱导所需的死亡程序,而不会自我毁灭。这些结果为哺乳动物细胞死亡的可编程控制奠定了基础。
  • 《人造开关蛋白开启细胞编程新纪元》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-04-08
    • 019年7月24日,华盛顿大学和加州大学的研究者在Nature期刊连发两篇论文,表示已经开发了一种从头设计的开关蛋白,可以通过感知细胞环境的变化并释放以特定方式起反应的关键肽,实现对活细胞的编程,以执行新的生物技术和治疗功能。该研究为合成生物学和细胞重编程开辟了新的道路。 该团队将这一设计称为锁定正交笼/关键蛋白(Latching Orthogonal Cage–Key pRotein,LOCKR),它由几种具有不同功能的分子组成,一个“门闩”,一个“笼子”,一把“钥匙”和一个生物活性肽。这种通用结构使它非常灵活,根据不同应用场景,它可以打开或关闭不同的功能单元,进而改变基因表达、改变细胞中分子的运输方向、降解特定的蛋白质或者控制蛋白质结合的相互作用。 其中一篇论文表示研究者已经通过三种不同功能的开关证明了LOCKR的有效性和普遍性:促凋亡肽的结合、降解决定子介导的蛋白质降解和通过核输出序列的蛋白质定位。另一篇论文还描述了研究者如何利用LOCKR的即插即用特性来实现内源性信号通路和合成基因电路的反馈控制。 与CRISPR等生物工程工具都不同,LOCKR是第一个完全由科学家构思和设计出来的分子工具。LOCKR将DNA开关技术的可编程性引入蛋白质领域,与天然蛋白互作网络相比,它具有可调控性和灵活性,与DNA纳米技术相比更容易实现生物编程。LOCKR还提供了一种与活细胞相互作用的新方法,该方法可以为癌症、自身免疫性疾病等多种疾病的治疗提供新的思路。