《【文献】Light: science & applications | Ultrasensitive photoelectric detection with room temperature extremum》

  • 来源专题:光电信息技术
  • 编译者: 王靖娴
  • 发布时间:2025-05-14
  • 【研究概述】文献《Ultrasensitive photoelectric detection with room temperature extremum》发表于《light: science & applications》。文章围绕室温光电探测展开研究,旨在解决现有室温探测器在红外至太赫兹波段灵敏度不足的问题。研究内容主要涵盖对Ta2NiSe5材料的特性探究、基于该材料的探测器性能测试以及Ta2NiSe5?WS2范德华异质结探测器的构建与性能分析124。研究发现,Ta2NiSe5在 326K 时会发生从半金属到激子绝缘体(EI)的相转变,EI 相中的激子凝聚使载流子浓度降低、迁移率提高,进而提升光电响应。通过对Ta2NiSe5纳米片进行变温拉曼光谱、电阻和霍尔表征,证实了其相转变特性和电学性质变化。基于Ta2NiSe5制备的光电探测器在室温下,从可见光到太赫兹波段均展现出优异性能,在太赫兹波段特定探测率D?可达5.3×1011cm?Hz1/2?W?1 ,相比商用室温太赫兹探测器提高了两个数量级,且具有 360kHz 的电带宽和快速响应速度356。为抑制暗电流,构建了Ta2NiSe5?WS2范德华异质结探测器。该异质结形成了势垒,有效降低了暗电流和噪声,增强了光生载流子的分离效率。测试结果表明,异质结探测器在太赫兹波段和可见光 - 近红外 - 短波红外波段的性能均得到显著提升,在 635nm 处D?高达4.1×1012cm?Hz1/2?W?1 ,远超Ta2NiSe5器件47。

    该研究利用Ta2NiSe5的 EI 相转变实现了室温下的超灵敏光电探测,为光电子学开辟了新途径,在环境监测、遥感等领域具有广阔的应用前景。

    (原文见附件)

  • 原文来源:https://www.nature.com/articles/s41377-024-01701-0
相关报告
  • 《【文献】Advanced Science| Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed》

    • 来源专题:光电信息技术
    • 编译者:王靖娴
    • 发布时间:2025-01-20
    • 【内容概述】该研究介绍了一种基于范德华异质结构(vdW heterostructure)的单极势垒光电探测器,其核心结构为多层石墨烯(G)、二硒化钨(WSe?)和二硒化铂(PtSe?)组成的G-WSe?-PtSe?异质结构。该器件实现了极高的光开关比(约10?)、超快响应速度(上升时间699纳秒,衰减时间452纳秒)以及高达4.87%的光电转换效率,并且在室温下展现出从紫外(365纳米)到长波红外(10.6微米)的超宽带光响应能力。此外,该器件在长波红外波段表现出优异的无制冷探测能力,光响应度达到1.8 A/W。研究还展示了基于该光电探测器的自由空间光通信系统,证明了其在高速光通信领域的应用潜力。 (下图为G-WSe2-PtSe2光电器件结构及性能)
  • 《Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2, 3, 4, 5 and organic semiconductors2, 6, 7, 8, 9, 10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.