《Ultrafast and highly sensitive detection of SARS-CoV-2 spike protein by field-effect transistor graphene-based biosensors》

  • 来源专题:现代化工
  • 编译者: 武春亮
  • 发布时间:2024-07-30




















  • Skip to content

    Accessibility Links

    Skip to content
    Skip to search IOPscience
    Skip to Journals list
    Accessibility help









    IOP Science home





    Accessibility Help







    Search


    Journals


    Journals list
    Browse more than 100 science journal titles


    Subject collections
    Read the very best research published in IOP journals


    Publishing partners
    Partner organisations and publications


    Open access
    IOP Publishing open access policy guide


    IOP Conference Series
    Read open access proceedings from science conferences worldwide




    Books


    Publishing Support



    Login

    IOPscience login / Sign Up








    Close

    Click here to close this panel.



    Search all IOPscience content








    Article Lookup

    Select journal (required)

    Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Earth (2025 - present)Mach. Learn.: Eng. (2025 - present)Mach. Learn.: Health (2025 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004)

    Volume number:

    Issue number (if known):

    Article or page number:





















    Nanotechnology


















    Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.
    Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.
    We are proudly declaring that science is our only shareholder.















    ACCEPTED MANUSCRIPT


    ?




    The following article is
    Open access



    Ultrafast and highly sensitive detection of SARS-CoV-2 spike protein by field-effect transistor graphene-based biosensors


    Thiago Alonso Alonso Stephan Lacerda Sousa1, Nathalie Almeida2, Fabrício Santos2, Priscilla Filgueiras3, Camila Corsini3, Camila Lacerda4, Thais Silva4, Rafaella F. Q. Grenfell5 and Flavio Plentz2




    Accepted Manuscript online 26 July 2024
    ?



    © 2024 The Author(s). Published by IOP Publishing Ltd



    What is an Accepted Manuscript?




    DOI 10.1088/1361-6528/ad67e8

    Download Accepted Manuscript PDF















    Figures

    Skip to each figure in the article




    Tables

    Skip to each table in the article




    References





    Citations





    Article data

    Skip to each data item in the article

    What
    is article data?



    Open science






















    Article metrics

    1 Total downloads
















    Submit

    Submit to this Journal





    Share this article































    Article and author information




    Author e-mailsthiagostephan@gmail.com
    Author affiliations1 Physics, Technical University of Denmark, Fysikvej B309, Lyngby, Hovedstaden, 2800, DENMARK
    2 Physics, Universidade Federal de Minas Gerais, Av. Pres. Ant?nio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, BRAZIL
    3
    Funda??o Oswaldo Cruz Instituto René Rachou, Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte, Minas Gerais, 30190-002, BRAZIL
    4 Physics, Universidade Federal de Minas Gerais, Av. Pres. Ant?nio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, BRAZIL
    5
    Funda??o Oswaldo Cruz Centro de Pesquisas René Rachou, Rua Professor José Vieira de Mendon?a, 1000, Belo Horizonte, Minas Gerais, 30190-002, BRAZIL

    ORCID iDsThiago Alonso Alonso Stephan Lacerda Sousa https://orcid.org/0000-0001-8838-3648


    Dates

    Received 13 March 2024
    Revised 16 July 2024
    Accepted 26 July 2024
    Accepted Manuscript online 26 July 2024







    Peer review information

    Method: Single-anonymous


    Revisions: 1
    Screened for originality? Yes


















    Journal RSS





    Sign up for new issue notifications










    10.1088/1361-6528/ad67e8

    Abstract



    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), etiological agent for the coronavirus disease 2019 (COVID-19), has resulted in over 775 million global infections. Early diagnosis remains pivotal for effective epidemiological surveillance despite the availability of vaccines. Antigen-based assays are advantageous for early COVID-19 detection due to their simplicity, cost-effectiveness, and suitability for point-of-care testing (PoCT). This study introduces a graphene field-effect transistor-based biosensor designed for high sensitivity and rapid response to the SARS-CoV-2 spike protein. By functionalizing graphene with monoclonal antibodies and applying short-duration gate voltage pulses, we achieve selective detection of the viral spike protein in human serum within 100 μs and at concentrations as low as 1 fg/mL, equivalent to 8 antigen molecules per μL of blood. Furthermore, the biosensor estimates spike protein concentrations in serum from COVID-19 patients. Our platform demonstrates potential for next-generation PoCT antigen assays, promising fast and sensitive diagnostics for COVID-19 and other infectious diseases.




    Export citation and abstract

    BibTeX
    RIS







    As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.


    Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/4.0


    Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.





















    Back to top









    10.1088/1361-6528/ad67e8

    You may also like

    Journal articles



    Review—Role of Nanomaterials in Screenprinted Electrochemical Biosensors for Detection of Covid-19 and for Post-Covid Syndromes


    An ITER-relevant passive active multijunction launcher for lower hybrid current drive in JET-grade plasmas


    Trends in nanomaterial-based biosensors for viral detection


    Evolution of two-step magnetic transition on nanogranular Gd5Si1.3Ge2.7 thin film


    MILLISECOND IMAGING OF RADIO TRANSIENTS WITH THE POCKET CORRELATOR


    Virtual Screening and In Silico Interactions Studies for Potential Antivirals and Diagnostics against the Spike protein from the Novel Coronavirus SARS-Cov-2



































    IOPscience


    Journals


    Books


    IOP Conference Series


    About IOPscience


    Contact Us


    Developing countries access


    IOP Publishing open
    access policy


    Accessibility




    IOP Publishing


    Copyright 2024 IOP Publishing


    Terms and Conditions


    Disclaimer


    Privacy
    and Cookie Policy




    Publishing Support


    Authors


    Reviewers


    Conference
    Organisers












    This site uses cookies. By continuing to use this
    site you agree to our use of cookies.



    IOP Publishing Twitter page






    IOP Publishing Facebook page






    IOP Publishing LinkedIn page






    IOP Publishing Youtube page






    IOP Publishing WeChat QR code






    IOP Publishing Weibo page























  • 原文来源:https://iopscience.iop.org/article/10.1088/1361-6528/ad67e8
相关报告
  • 《Highly Transparent and Stretchable Field-Effect Transistor Sensors Using Graphene–Nanowire Hybrid Nanostructures》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Abstract image Transparent and stretchable electronics with remarkable bendability, conformability, and lightness are the key attributes for sensing or wearable devices. Transparent and stretchable field-effect transistor sensors using graphene–metal nanowire hybrid nanostructures have high mobility (≈3000 cm2 V−1 s−1) with low contact resistance, and they are transferrable onto a variety of substrates. The integration of these sensors for RLC circuits enables wireless monitoring.
  • 《BioRxiv,2月16日,The insert sequence in SARS-CoV-2 enhances spike protein cleavage by TMPRSS》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-17
    • The insert sequence in SARS-CoV-2 enhances spike protein cleavage by TMPRSS Tong Meng, Hao Cao, Hao Zhang, Zijian Kang, Da Xu, Haiyi Gong, Jing Wang, Zifu Li, Xingang Cui, Huji Xu, Haifeng Wei, Xiuwu Pan, Rongrong Zhu, Jianru Xiao, Wang Zhou, Liming Cheng, Jianmin Liu doi: https://doi.org/10.1101/2020.02.08.926006 Abstract At the end of 2019, the SARS-CoV-2 induces an ongoing outbreak of pneumonia in China1, even more spread than SARS-CoV infection2. The entry of SARS-CoV into host cells mainly depends on the cell receptor (ACE2) recognition and spike protein cleavage-induced cell membrane fusion3,4. The spike protein of SARS-CoV-2 also binds to ACE2 with a similar affinity, whereas its spike protein cleavage remains unclear5,6. Here we show that an insertion sequence in the spike protein of SARS-CoV-2 enhances the cleavage efficiency, and besides pulmonary alveoli, intestinal and esophagus epithelium were also the target tissues of SARS-CoV-2. Compared with SARS-CoV, we found a SPRR insertion in the S1/S2 protease cleavage sites of SARS-CoV-2 spike protein increasing the cleavage efficiency by the protein sequence aligment and furin score calculation. Additionally, the insertion sequence facilitates the formation of an extended loop which was more suitable for protease recognition by the homology modeling and molicular docking. Furthermore, the single-cell transcriptomes identified that ACE2 and TMPRSSs are highly coexpressed in AT2 cells of lung, along with esophageal upper epithelial cells and absorptive enterocytes. Our results provide the bioinformatics evidence for the increased spike protein cleavage of SARS-CoV-2 and indicate its potential target cells. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.