《Highly Transparent and Stretchable Field-Effect Transistor Sensors Using Graphene–Nanowire Hybrid Nanostructures》

  • 来源专题:绿色印刷—可穿戴电子
  • 编译者: 张宗鹏
  • 发布时间:2016-04-13
  • Abstract
    image

    Transparent and stretchable electronics with remarkable bendability, conformability, and lightness are the key attributes for sensing or wearable devices. Transparent and stretchable field-effect transistor sensors using graphene–metal nanowire hybrid nanostructures have high mobility (≈3000 cm2 V−1 s−1) with low contact resistance, and they are transferrable onto a variety of substrates. The integration of these sensors for RLC circuits enables wireless monitoring.

  • 原文来源:;http://onlinelibrary.wiley.com/doi/10.1002/adma.201500710/abstract
相关报告
  • 《Ultrafast and highly sensitive detection of SARS-CoV-2 spike protein by field-effect transistor graphene-based biosensors》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-30
    • Skip to content Accessibility Links Skip to content Skip to search IOPscience Skip to Journals list Accessibility help IOP Science home Accessibility Help Search Journals Journals list Browse more than 100 science journal titles Subject collections Read the very best research published in IOP journals Publishing partners Partner organisations and publications Open access IOP Publishing open access policy guide IOP Conference Series Read open access proceedings from science conferences worldwide Books Publishing Support Login IOPscience login / Sign Up Close Click here to close this panel. Search all IOPscience content Article Lookup Select journal (required) Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Earth (2025 - present)Mach. Learn.: Eng. (2025 - present)Mach. Learn.: Health (2025 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004) Volume number: Issue number (if known): Article or page number: Nanotechnology Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing. Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications. We are proudly declaring that science is our only shareholder. ACCEPTED MANUSCRIPT ? The following article is Open access Ultrafast and highly sensitive detection of SARS-CoV-2 spike protein by field-effect transistor graphene-based biosensors Thiago Alonso Alonso Stephan Lacerda Sousa1, Nathalie Almeida2, Fabrício Santos2, Priscilla Filgueiras3, Camila Corsini3, Camila Lacerda4, Thais Silva4, Rafaella F. Q. Grenfell5 and Flavio Plentz2 Accepted Manuscript online 26 July 2024 ? © 2024 The Author(s). Published by IOP Publishing Ltd What is an Accepted Manuscript? DOI 10.1088/1361-6528/ad67e8 Download Accepted Manuscript PDF Figures Skip to each figure in the article Tables Skip to each table in the article References Citations Article data Skip to each data item in the article What is article data? Open science Article metrics 1 Total downloads Submit Submit to this Journal Share this article Article and author information Author e-mailsthiagostephan@gmail.com Author affiliations1 Physics, Technical University of Denmark, Fysikvej B309, Lyngby, Hovedstaden, 2800, DENMARK 2 Physics, Universidade Federal de Minas Gerais, Av. Pres. Ant?nio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, BRAZIL 3 Funda??o Oswaldo Cruz Instituto René Rachou, Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte, Minas Gerais, 30190-002, BRAZIL 4 Physics, Universidade Federal de Minas Gerais, Av. Pres. Ant?nio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, BRAZIL 5 Funda??o Oswaldo Cruz Centro de Pesquisas René Rachou, Rua Professor José Vieira de Mendon?a, 1000, Belo Horizonte, Minas Gerais, 30190-002, BRAZIL ORCID iDsThiago Alonso Alonso Stephan Lacerda Sousa https://orcid.org/0000-0001-8838-3648 Dates Received 13 March 2024 Revised 16 July 2024 Accepted 26 July 2024 Accepted Manuscript online 26 July 2024 Peer review information Method: Single-anonymous Revisions: 1 Screened for originality? Yes Journal RSS Sign up for new issue notifications 10.1088/1361-6528/ad67e8 Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), etiological agent for the coronavirus disease 2019 (COVID-19), has resulted in over 775 million global infections. Early diagnosis remains pivotal for effective epidemiological surveillance despite the availability of vaccines. Antigen-based assays are advantageous for early COVID-19 detection due to their simplicity, cost-effectiveness, and suitability for point-of-care testing (PoCT). This study introduces a graphene field-effect transistor-based biosensor designed for high sensitivity and rapid response to the SARS-CoV-2 spike protein. By functionalizing graphene with monoclonal antibodies and applying short-duration gate voltage pulses, we achieve selective detection of the viral spike protein in human serum within 100 μs and at concentrations as low as 1 fg/mL, equivalent to 8 antigen molecules per μL of blood. Furthermore, the biosensor estimates spike protein concentrations in serum from COVID-19 patients. Our platform demonstrates potential for next-generation PoCT antigen assays, promising fast and sensitive diagnostics for COVID-19 and other infectious diseases. Export citation and abstract BibTeX RIS As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately. Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/4.0 Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record. Back to top 10.1088/1361-6528/ad67e8 You may also like Journal articles Review—Role of Nanomaterials in Screenprinted Electrochemical Biosensors for Detection of Covid-19 and for Post-Covid Syndromes An ITER-relevant passive active multijunction launcher for lower hybrid current drive in JET-grade plasmas Trends in nanomaterial-based biosensors for viral detection Evolution of two-step magnetic transition on nanogranular Gd5Si1.3Ge2.7 thin film MILLISECOND IMAGING OF RADIO TRANSIENTS WITH THE POCKET CORRELATOR Virtual Screening and In Silico Interactions Studies for Potential Antivirals and Diagnostics against the Spike protein from the Novel Coronavirus SARS-Cov-2 IOPscience Journals Books IOP Conference Series About IOPscience Contact Us Developing countries access IOP Publishing open access policy Accessibility IOP Publishing Copyright 2024 IOP Publishing Terms and Conditions Disclaimer Privacy and Cookie Policy Publishing Support Authors Reviewers Conference Organisers This site uses cookies. By continuing to use this site you agree to our use of cookies. IOP Publishing Twitter page IOP Publishing Facebook page IOP Publishing LinkedIn page IOP Publishing Youtube page IOP Publishing WeChat QR code IOP Publishing Weibo page
  • 《Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Abstract image A highly stretchable and transparent electrical heater is demonstrated by constructing a partially embedded silver nanowire percolative network on an elastic substrate. The stretchable network heater is applied on human wrists under real-time strain, bending, and twisting, and has potential for lightweight, biocompatible, and versatile wearable applications.