《高能所ATLAS组希格斯粒子实验研究新进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-08-01
  •         位于欧洲核子中心(CERN)的超环面仪器(ATLAS)合作组在最新发表的文章(arXiv:1802.04146)中宣称通过希格斯粒子产生的第二大模式——矢量玻色子熔合(VBF)衰变到双光子道(H→γγ) 的过程中观测到约5σ的信号(图1) 。这是在大型强子对撞机(LHC)单个实验上首次得出这样的分析结果。高能所ATLAS组方亚泉、章宇、娄辛丑小组在该项研究中做出了主导贡献。此项工作对研究希格斯粒子的产生模式、电弱相互作用以及新物理具有重要意义。
      希格斯粒子于2012年7月在LHC上的ATLAS和CMS实验中被发现,这是粒子物理研究的重要里程碑。它的发现对认识质量起源、完备标准模型、统一各种相互作用有重要意义。希格斯粒子的产生主要包含4种不同的模式,分别为胶子熔合(ggH)、VBF、W/Z玻色子伴随(W/ZH)、顶夸克伴随(ttH),其中ggH约占88%,VBF约占7%,其余两种合计5%。2012年7月希格斯粒子的发现以ggH产生模式为主要贡献。
      这次ATLAS通过VBF H→γγ观测到的信号是标准模型预测的2倍。但考虑到数据统计量局限以及尚未得到其它希格斯末态和CMS实验的证实,我们预计在未来1-2年RUN2上3倍于当前的数据会对是否有标准模型新物理有一个回答。
      另外,我所ATLAS组的梁志均、刘波、娄辛丑小组于今年5月发表了在ATLAS实验上首次通过H(bb)+末态寻找新共振态的文章(arXiv: 1805.01908)。该小组通过使用喷注微结构与基于径迹的喷注重建等新方法识别希格斯粒子的双底夸克末态,并首次设定了H+新共振态的产生截面上限,并把该末态的新共振态质量上限提高到3TeV以上。ATLAS合作组非常重视该结果,并为该文章撰写物理简报并广泛分享到实验组主页与社交网络中(图2)。
      目前,希格斯粒子研究的重点是实现希格斯粒子产生模式和不同衰变道的首次观测,希格斯粒子的自旋、宇称、散射截面和耦合等测量。这些测量对深入理解希格斯粒子的性质,探测是否有标准模型的新物理有重要意义。北京大学、北京航空航天大学、中国科学院高能物理研究所、南京大学、清华大学、山东大学、上海交通大学、中国科学技术大学的ATLAS和CMS组在上述相关课题的希格斯玻色子研究中非常活跃并作出显著性贡献。
      这两项研究工作得到了中国科学院前沿科学重点研究项目、中国科学院“相关人才计划”启动基金、国家自然基金委和科技部的资助。

相关报告
  • 《我所纳米反应器研究取得新进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-10-17
    •         近日,我所微纳米反应器与反应工程学创新特区研究组(05T7组)刘健研究员团队在微/纳米反应器的构筑方面取得新进展:通过设计一种亚微米反应器,实现了苯乙炔加氢高选择性的制取苯乙烯。该工作发表在《先进功能材料》(Adv. Funct. Mater.)上,并被选为当期的背封面(Back Cover)论文。   设计合适的反应器并优化操作条件是化学工程中至关重要的步骤。在自然界中,化学转化往往以串联反应的形式在限域的空间内完成,这种限域的空间可以是几个纳米的酶,也可以是微米级的细胞。在材料科学领域,通过模拟细胞而设计的微/纳米反应器,不但可以提高反应的效率和选择性,而且这些“人造细胞”在高温烧结下还可以表现出优异的稳定性。然而,在设计微/纳米反应器时,如何精确控制组成,以及如何选择活性位点这两个催化反应所必需的问题仍然具有挑战性。         我所李灿院士和杨启华研究员之前在纳米反应器研究方面取得了系列进展,在此基础上,刘健研究团队与中国科学院金属所等科研机构合作,成功构建了一种“蛋黄-蛋壳”结构的亚微米反应器,他们将负载金属纳米粒子的亚微米反应器合成为氧化锌-微孔碳核壳(Pd&ZnO@carbon)结构。该亚微米反应器作为一种催化剂在苯乙炔加氢制苯乙烯反应中具有高选择性(大于99%)。实验结果表明,Pd&ZnO@carbon颗粒具有优异的催化性能,其转化率和选择性远远高于在相同Pd负载量下的Pd/ZnO(2.2倍)和Pd/C(1.7倍)颗粒。此外,Pd&ZnO@carbon亚微米反应器显示出优异的催化稳定性,反应25小时后仍没有失活。这种亚微米反应器为氧化锌核与碳壳之间创造了空隙,从而为多相催化反应中反应物的富集提供了独特的反应环境,它还可以通过原位生长ZnO核,形成一种碱性气氛,便于苯乙烯脱附,避免过度氢化。亚微米反应器的碳外壳可以保护催化核心纳米颗粒抑制其团聚。同时,核与壳之间的空隙空间,为多种用途的微/纳米反应器或纳米容器储存货物时提供足够的容纳空间。该研究有助于合理设计化学性能增强的多功能催化剂。   以上研究得到大连化物所创新基金的资助。
  • 《单细胞测序技术的研究新进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-01-03
    • 单细胞测序技术通过在单个实验中快速分析数千个甚至数百万个细胞,能够发现许多疾病的病因,细胞间如何相互作用,以及哪些分子参与其中。11月21日,STAT网站发表的一篇文章介绍了单细胞测序的新进展。 寻找新的药物靶点 尽管人们可通过显微镜或组织活检来确定组织是否癌变,但很难分离出哪些细胞是良性的,哪些可能逃避治疗,继续突变并引发转移。大部分的临床测序工作都遵循平均法则,对整个细胞群体进行遗传分析。因此,这些细胞之间的微妙差异并不清楚,也很难分离出恶性程度最高的细胞。不过,正是这些微妙的差异,才造成每种癌症的独特病理。 单细胞测序的工作原理是:将癌症活检样本中的单个细胞分离,锁定在微流体芯片的迷你检测管中,然后通过一系列的酶和化学试剂处理从而释放遗传物质。此时,细胞被标上独特的“条形码”。之后,研究人员可以检测细胞是否携带特定突变,或表达与疾病相关的特定分子。Celsius Therapeutics公司正在利用单细胞测序来寻找新的药物靶点。Mission Bio公司正与MD安德森癌症中心、美国国家癌症研究所和斯坦福大学癌症研究中心等机构合作,通过患者组织样本寻找残留的癌症。单细胞测序有望帮助临床医生了解某种疗法是否针对特定的细胞类型。 发现新的人体细胞 “人类细胞图谱计划”(Human Cell Atlas)是一项为创建人体每种细胞类型的详细分类而发起的国际行动。它的部分资金来自“扎克伯格-陈计划”(Chan Zuckerberg Initiative)。随着一些成果的陆续发布,研究人员已经获得了一些新的研究进展。 美国艾伦脑科学研究所科学家Ed Lein正致力于揭开人类大脑的细胞组成。他表示,这个想法是对大脑皮层进行逆向工程,试图了解其中所有类型的细胞,然后了解它们如何连接在一起。单细胞测序技术的优势在于能够测定每个细胞中5000到10000个基因,并对数千个细胞同时开展分析。这项工作也取得了丰硕的成果。2018年8月,Lein团队宣布通过单细胞RNA测序发现了一种“玫瑰果神经元(rosehip neurons)”,这些细胞的轴突束就像吐露花瓣的玫瑰花。现有的结论表明,这些细胞似乎只存在于人体中,可能以一种非常特殊的方式控制信息流。 推动药物发现 Celsius Therapeutics公司正利用单细胞测序来推动整个药物发现的过程。这家公司在2018年的首轮风险融资中获得6500万美元,其研究对象是癌症和自身免疫性疾病。该公司正在分析癌症等疾病中的单细胞RNA,以寻找药物靶点。事实上,单细胞测序为药物开发开辟了一条全新的道路。