《刘俊研究组在植物免疫机制研究中取得新进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-09-25
  • 植物在进化过程中获得了一套有效的先天免疫系统以应对病菌的侵染。细胞膜上的模式识别受体(Pattern recognition receptors, PRRs)可以识别病菌保守的特征物质,如细菌的鞭毛蛋白、伸长因子和真菌的几丁质等,从而激活植物免疫。许多病菌可以分泌效应蛋白进入植物体内,干扰PRRs对病菌的识别或其介导的免疫激活通路,促进病菌致病性。PRRs有很大一部分是受体似激酶(Receptor-like kinases, RLKs),这些RLKs的典型特征是胞内含有激酶结构域,并具有激酶活性。效应蛋白通过多种方式干扰PRRs的功能,如阻止其磷酸化下游信号通路组分,或直接降解PRRs等。因此,病菌的效应蛋白的功能目前认为是主要干扰寄主抗性的。但是,在另一方面,寄主植物是否是完全被动的防御?植物中是否存在某种机制抑制或削弱病菌分泌的效应蛋白的功能?

      刘俊研究组于2020年9月22日在Molecular Plant 在线发表题为“A plant lectin receptor-like kinase phosphorylates the bacterial effector AvrPtoB to dampen its virulence in Arabidopsis”的论文,报道了拟南芥凝集素受体激酶LecRK-IX.2磷酸化丁香假单胞菌(Pseudomonas syringae)效应蛋白AvrPtoB,削弱该效应蛋白的毒性,从而增强植物免疫。效应蛋白AvrPtoB是丁香假单胞菌的重要致病因子,具有E3泛素连接酶活性,可以在植物中靶向鞭毛识别受体FLS2和几丁质识别受体CERK1、水杨酸信号调控蛋白NPR1以及番茄的免疫蛋白Fen等,引起这些蛋白的泛素化降解。刘俊研究组前期发现了凝集素受体激酶LecRK-IX.2可以介导植物免疫响应,并且其转录受鞭毛蛋白的核心小肽flg22的诱导(Luo et al., 2017)。有意思的是,LecRK-IX.2的胞内激酶结构域与CERK1和FLS2等的激酶结构域相似,而且LecRK-IX.2也被AvrPtoB靶向并泛素化降解,因而LecRK-IX.2介导的免疫被抑制。

      进一步研究发现,过量表达LecRK-IX.2可以一定程度上抑制AvrPtoB的毒性。LecRK-IX.2与AvrPtoB在体内和体外能直接发生互作,而且LecRK-IX.2可以直接磷酸化AvrPtoB的335位的丝氨酸残基(S335)。S335的磷酸化使得AvrPtoB不能形成二聚体,而二聚体的形成对很多包括AvrPtoB 在内的E3连接酶与底物的结合和泛素化所必需的。因此,该位点的磷酸化降低了AvrPtoB对LecRK-IX.2的泛素化降解。需要指出的是,AvrPtoB对LecRK-IX.2的泛素化与其被磷酸化之间是竞争性的,flg22可以增强LecRK-IX.2对AvrPtoB的磷酸化。因此,这项研究揭示了RLKs可以参与对病菌效应蛋白的修饰,抑制其毒力,是增强植物免疫的新机制。

    这项研究也揭示了一个有意思的生物学现象,即病菌效应蛋白作用于寄主激酶结构域可能是双刃剑,很有可能其自身成为激酶的底物。如近期,UC Davis Gitta Coaker教授研究组报道了效应蛋白AvrPtoB 丝氨酸258位点可以被植物中的SnRK超家族成员的SnRK2.8磷酸化,并潜在地增强了其毒性(Lei et al., 2020)。而在番茄中,免疫蛋白Fen和Pto也可以磷酸化AvrPtoB苏氨酸450位点,导致E3连接酶活性丧失,且Fen和Pto也是AvrPtoB的分子靶标(Ntoukakis et al., 2009)。因此,AvrPtoB在植物体内的多个位点可以被寄主磷酸化,这些磷酸化的事件可能受侵染过程中的多种因素所调控,其结果是增强或抑制了其毒性。该研究结果进一步诠释了植物针对效应蛋白这一病菌主要的致病武器所进行的拉锯战。

      中国科学院微生物所助理研究员徐宁、博士生罗旭明和福建农林大学的吴薇为该论文的共同第一作者,刘俊研究员为通讯作者。中国农科院的魏海雷研究员和福建农林大学的邹华松教授参与了部分研究工作。该工作得到了中国科学院先导专项和国家自然科学基金的资助。

  • 原文来源:https://www.cell.com/molecular-plant/fulltext/S1674-2052(20)30311-7;http://www.im.cas.cn/xwzx2018/kyjz/202009/t20200924_5704488.html
相关报告
  • 《昆明植物所在植物激素茉莉酸和乙烯调控植保素的分子机制研究中取得新进展》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-11-10
    •     东莨菪素(scopoletin)和其糖基化的东莨菪苷(scopolin)是植物生物合成的重要香豆素类化合物。已有的研究表明它们在镇痛、抗炎、降血压、抗肿瘤、防治高尿酸血症等方面具有明显的药理活性。最近的研究还显示,它可以改善多巴胺能神经元的存活状况,从而促进帕金森病人运动能力的恢复;它还是一种天然有效的乙酰胆碱酯酶抑制剂,可以促进乙酰胆碱的释放,提高老年性痴呆症患者的学习和记忆能力。有意思的是,中国科学院昆明植物研究所资源植物与生物技术重点实验室近来的工作证明它们其实是烟草属植物抵御链格孢菌的重要植保素(Sun et al., 2014 Journal of Experimental Botany)。   链格孢菌(Alternaria alternata)是一种营腐生生活的病原真菌,它的不同病理小种可以侵染马铃薯、苹果、烟草、玉米、梨等很多的农作物,造成极大的经济损失。其中,链格孢菌感染导致的赤星病是烟草属植物最主要的真菌性病害。中国科学院昆明植物研究所植物次生代谢分子调控专题研究组在前期发现:scopoletin和scopolin是植物抵御病原菌的重要植保素,而且茉莉酸和乙烯这两种植物激素是它们生物合成所必须的信号(Sun et al., 2014 Journal of Experimental Botany; Sun et al., 2017 Plant Pathology)。但是,目前这两个激素信号是如何一起调控它们生物合成的分子机制仍然不清楚。该研究组通过多年的努力,首次发现了茉莉酸和乙烯信号通过协同的方式调控了scopoletin和scopolin生物合成的现象,并发现了介导这种协同调控机制的关键转录因子NaWRKY70。     载RNA修饰专题:RNA修饰隐藏的神秘调控>>领 取  研究发现,在茉莉酸甲酯(MeJA)和乙烯利(ethephon)共同作用下,这两种植保素的积累水平及其关键酶基因feruloyl-CoA 6’-hydroxylase 1(NaF6’H1)的转录水平会急剧高水平的被诱导,而单独MeJA或者ethephon处理一点也不能诱导它们的积累,表明茉莉酸和乙烯通过协同方式调控scopoletin和scopolin的合成。进一步通过转录组测序和病毒介导的基因沉默技术(VIGS)筛选到一个WRKY类的转录因子NaWRKY70,其表达模式与NaF6’H1相似,受链格孢菌诱导,以及茉莉酸和乙烯的协同诱导。通过对NaWRKY70基因沉默、基因编辑和过表达的稳定转化植株的分析,进一步证明NaWRKY70是茉莉酸和乙烯信号协同调控scopoletin和scopolin合成的关键因子。凝胶阻滞实验(EMSA)、染色质免疫共沉淀(ChIP-qPCR)和启动子激活实验(Dual-LUC)表明,NaWRKY70通过直接与NaF6’H1启动子区的W-box结构域结合并激活其表达进而调控scopoletin和scopolin的合成。此外,乙烯信号途径的关键调控因子NaEIN3-like1能够直接与NaWRKY70启动子结合并激活其表达。同时,JA信号途径重要因子NaMYC2s也间接调控NaWRKY70和NaF6’H1的表达,从而控制scopoletin和scopolin的合成。   该文章发现并提供了两种不同的植物激素通过协同的方式调控了植物“化学的防御”的典型案例,揭示了NaWRKY70整合茉莉酸和乙烯信号调控scopoletin和scopolin的分子机制。研究结果丰富了植物激素协同调控植保素的理论认识,有助于我们更深入了解植物抵抗链格孢菌的分子机制,而且为scopoletin和scopolin的“工业提取”提供了思路。   以上研究成果以Synergistic induction of phytoalexins in Nicotiana attenuata by JA and ethylene signaling mediated by NaWRKY70为题于10月23日在植物学著名期刊Journal of Experimental Botany上在线发表,中国科学院昆明植物研究所宋娜博士后为该文章第一作者,吴劲松研究员为通讯作者。该研究工作得到了国家自然科学基金(32370311)和云南省海外高层次人才计划的资助。
  • 《武汉植物园在水生植物功能性状及对环境响应研究中取得新进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-12-09
    • 与陆生植物相比,水生植物的生存环境已经发生了根本性的变化,由此沉水植物演化出了一系列较为特殊的功能性状,对周围环境的响应机制也有其特殊之处。武汉植物园水生植物生物学学科组科研人员在水生植物功能性状及对环境响应研究开展了一系列研究,取得如下进展:   1、沉水植物对不同盐度的响应   人们对盐分影响植物生长发育的认知可能已有上千年。实验中通过设置不同的盐度梯度,发现穗状狐尾藻在盐度5‰条件下原有茎尖会死亡,同时形成新的矮化茎尖。解剖结构的研究表明植物茎尖表皮细胞形态发生显著变化。相关研究结果以“Responses of five submerged macrophytes to NaCl salinity in a tropical mesocosm study”为题发表在Fundamental and Applied Limnology上。本文第一作者为海南大学陈涛,共同通讯作者为海南大学尹黎燕和武汉植物园操瑜副研究员。论文DOI:10.1127/fal/2020/1303.   2、沉水植物对螺类密度的响应   螺类与沉水植物存在较为复杂的交互作用,一种是通过取食附着藻促进植物的生长,一种是通过直接取食抑制植物的生长。本实验通过设置不同的螺类密度对四种沉水植物生长与繁殖的影响进行了分析,研究结果表明:高密度条件下,沉水植物生长受到了显著的抑制,而且不同植物的功能性状响应也有所不同,茎杆较细的尖叶眼子菜(Potamogeton oxyphyllus)在高密度螺类处理中株高显著矮于低密度螺类出。相关研究结果以“Responses of four submerged macrophytes to freshwater snail density (Radix swinhoei) under clear-water conditions: A mesocosm study”为题发表在Ecology and Evolution上。本文第一作者是武汉植物园水生植物生物学课题组支永威,通讯作者为操瑜副研究员。论文DOI: 10.1002/ece3.6489。   3、沉水植物对新型污染物的响应   狸藻是大型无根水生植物,通常生长在小湖泊和池塘中。一株狸藻可以拥有成百上千个捕虫囊来捕获和消化猎物。这些捕虫囊(长1-5毫米)由外壁和顶部的单个阀门组成。除了植物表面进行的正常养分吸收外,捕虫囊还用于捕获小的猎物,这些猎物是狸藻养分的主要来源。添加新型污染物微塑料的受控实验结果表明狸藻的生长显著的受到微塑料的抑制,可能的毒理机制是,狸藻可以通过捕虫囊摄入大量的微塑料,并且微塑料也可以粘附在植物上。同时,通过模型计算探讨了EC50在毒理学中的应用。相关研究结果以“Bladder entrance of microplastic likely induces toxic effects in carnivorous macrophyte Utricularia aurea Lour”为题发表在Environmental Science and Pollution Research上,本文第一作者是武汉植物园水生植物生物学课题组周靖喆,通讯作者为操瑜副研究员。同时以“Letter to the editor: Proteomic responses to silver nanoparticles vary with the fungal ecotype”为题发表在Science of the Total Environment上。本文第一作者是海南大学黄家权教授,通讯作者为江红生副研究员。论文DOI: 10.1007/s11356-020-09529-y及10.1016/j.scitotenv.2020.140705.   4、沉水植物功能性状研究(叶片长度和碳酸氢根的利用)   叶片是植物光合作用的重要器官,叶片长度作为植物性状中的一个重要指标,一直以来都是相关研究的重点。世界上叶片最长的陆生木本植物是棕榈树科的Raphia regalis,叶长可达25 m。最长的陆生草本植物百岁兰属(Welwitschia)、海芋属(Alocasia)和Musa的植物叶片可达3 m(除去叶柄)。目前关于陆生植物叶片的最大长度的限制原因已有较多研究,认为最大叶长主要受限于叶脉直径和叶密度,但对于沉水植物的叶片最大长度及其限制因素仍然是未知的。   具有带状叶片的沉水被子植物通常具有较长的叶片,且此类植物的长度通常代表植物的最大高度和捕光能力。本研究通过对淡海水中48种带状沉水被子植物的最大叶长数据进行收集整理,发现澳大利亚苦草(Vallisneria australis)的叶片最长,为300 cm(图1)。鉴于水生被子植物起源于陆生植物,二者具有相似的生理基础(如营养需求和氧气输送),但由于水陆生境的不同,随着沉水植物对水环境的不断适应,二者的叶片性状存在差异较大,因此,限制沉水植物叶片伸长的因素可能与陆地植物不同。研究表明,光照不是调节淡水湖泊中沉水植物最大带状叶长的唯一影响因素,其它生物因素(如叶片寿命和密度)和非生物因素(如水力阻力)可能参与调节。该研究是对带状叶沉水植物最大叶长限制因素的初步探索,仍需更多相关工作(如叶片寿命)去研究限制其最大叶长的主要因素。相关研究结果以“Is there a maximum length of strap-like leaves for submerged angiosperms?”为题发表在Aquatic Botany上。本文第一作者是武汉植物园水生植物生物学学科组刘洋,通讯作者为操瑜副研究员。论文DOI: 10.1016/j.aquabot.2019.103184。   水分胁迫不再是沉水植物光合作用的主要限制因素,CO2成为沉水植物光合作用的首要限制因子。虽然CO2能轻易的穿透生物膜,但它在水中的扩散速率比在空气中要低104倍,此外由于水体与植物体边界厚的静水层的阻挡,使得沉水植物光合作用常受到低CO2供应的胁迫;而喀斯特地区水体中的无机碳含量常常非常高,沉水植物的光合无机碳利用策略可能与其他地区不同。本研究选取典型喀斯特地区的一条河流研究河流上下游沉水植物的无机碳利用能力,结果从河流上游到下游优势的沉水植物的主要无机碳利用途径从CO2转变为HCO3- 。相关研究结果以“ Different mechanisms of bicarbonate use affect carbon isotope composition in Ottelia guayangensis and Vallisneria denseserrulata in a karst stream”为题发表在Aquatic Botany上。本文第一作者是武汉植物园水生植物生物学学科组江红生,通讯作者为海南大学尹黎燕教授。论文DOI: 10.1016/j.aquabot.2020.103310 。