《韩家淮院士团队揭示NOD样受体家族蛋白寡聚化组装激活的范式》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-03-24
  • 在免疫反应起始阶段,机体通过模式识别受体感应病原体相关模式分子 (pathogen associated molecular pattern, PAMP) 和损伤相关模式分子 (damage associated molecular pattern, DAMP) 。NOD样受体(Nod-like receptor, NLR)家族是机体最大的一类模式识别受体;目前认为NLR感知识别相应模式分子后,可通过自身寡聚化组装形成大型信号分子机器, 如NLRP3,NLRC4等形成的炎症小体(Inflammasome),NOD2等形成的Nodosome,从而激活NF-κB通路、MAPK通路、细胞焦亡等,释放TNFα,IL-1β和IL-18等炎性细胞因子,介导下游一系列免疫炎症级联反应。这是机体最为基本的天然免疫防御反应之一,在机体清除病原感染和内源危险信号中发挥至关重要的作用。在人体中,多个NLR基因突变导致的异常激活也被发现参与了脓毒症、炎性肠病等多种重大炎性疾病的病理进程。

    NLR家族蛋白在结构上都含有一个核苷酸结合寡聚化结构域 (Nucleotide-binding and oligomerization domain, NOD或NACHT) ;除NLRP10外,所有NLR蛋白的C端都含有亮氨酸重复序列 (leucine-rich repeat, LRR),而其N末端则由各异的蛋白相互作用结构域构成,如CARD、PYD结构域等。大量研究表明,依赖NACHT结构域介导的寡聚化是NLR蛋白激活的共同特征和主要方式;但目前人们对NLR家族蛋白寡聚化组装激活的机制并不清楚。

    2023年3月21日,韩家淮院士团队在Immunity杂志上发表题为 Ribosome-rescuer PELO catalyzes the oligomeric assembly of NOD-like receptor family proteins via activating their ATPase enzymatic activity 的研究论文,报道了核糖体质量控制关键因子PELO通过激活NOD样受体家族蛋白的ATPase活性,控制其寡聚化组装和激活。

    PELO是进化上高度保守的蛋白,参与核糖体相关质量控制(ribosome-associated quality control,RQC),其与HBS1L形成的复合物可以识别具有空解码中心(decoding center)的停滞核糖体(stalled ribosome),进而介导停滞核糖体的40S亚基和60S亚基分离,促进核糖体的回收利用(ribosome rescue)。因而,PELO在胚胎发育、精子生成、表皮内稳态及神经系统发育等生理学过程中发挥重要功能;但其在免疫应答等应激反应中的功能研究仍是空白。韩家淮团队早前在果蝇中通过正向遗传学筛选鉴定到PELO,发现PELO通过调控病毒蛋白合成参与抗病毒天然免疫,首先揭示了PELO在天然免疫中的作用。之后陆续有研究表明植物中PELO的同源物也与抗病毒免疫相关,提示PELO参与免疫反应在进化上的高度保守性。研究者在利用定量质谱分析NLRP3炎症小体蛋白复合物时,发现PELO随着刺激被募集到NLRP3炎症小体蛋白复合物上,这引起了研究者的关注。

    团队首先确认了PELO和NLRP3的直接相互作用,并发现这种相互作用是通过NLRP3的NACHT和LRR结构域介导的,不依赖于其N端的PYD结构域。由于NACHT和LRR是NLR家族蛋白的共有结构域,研究者进一步分析发现PELO可以特异性地和所有胞质内的NLR家族蛋白相互作用。接着,研究者在多种细胞和小鼠模型中证实PELO参与调控NLR家族蛋白介导的天然免疫应答反应,如NOD2介导的NF-κB和MAPK信号通路激活,NLRP3、NLRC4和NLRR6介导的炎症小体激活和细胞焦亡等。进一步细胞实验发现,PELO通过直接与NLR蛋白结合控制了NLR蛋白在激活信号刺激下的寡聚化组装。另外,研究者证实,PELO介导NLR蛋白的激活不依赖其在核糖体相关质量控制通路中的作用,但二者之间存在互斥的关系:核糖体应激反应和NLR炎性小体激活可能通过竞争PELO分子以协调细胞在应激条件下的命运决定。

    在核糖体相关质量控制中,PELO可以促进HBS1L的GTPase活性,解聚停滞核糖体;而有意思的是,NLR蛋白属于STAND (signal transduction ATPases with numerous domains) ATPase家族,其NACHT结构域含有保守的ATP结合和水解结构域,且ATPase活性对于NLR的激活至关重要。因此,研究者推测PELO通过结合NLR蛋白的NACHT结构域,可能直接调节NACHT结构域的ATPase活性,进而影响NLR蛋白的寡聚化组装和激活。研究者通过体外ATPase活性检测实验,发现PELO可以高效地激活NLR家族蛋白的ATPase活性。紧接着,研究者建立了NLRC4炎症小体的体外组装系统,并证实PELO通过激活NLRC4的ATPase活性控制其寡聚化组装和激活。

    综上所述,该研究揭示了PELO的全新免疫学功能,发现PELO是所有胞质内NOD样受体蛋白的互作因子;PELO通过高效激活NLR蛋白的ATPase活性,控制NLR蛋白的寡聚化组装和激活,从而参与调控NLR家族蛋白介导的多种免疫炎症反应。

    该论文的第一作者为学院吴秀榕博士和医学院杨章华助理教授;韩家淮院士和吴秀榕博士为该论文的共同通讯作者。

    文章链接:https://doi.org/10.1016/j.immuni.2023.02.014

  • 原文来源:https://life.xmu.edu.cn/info/1045/9201.htm
相关报告
  • 《Science:新研究揭示VDAC蛋白寡聚体促进线粒体DNA释放和自身免疫反应》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-01-14
    • 免疫系统利用它的线粒体自我刺激针对感染的先天性反应和适应性反应。活性氧(ROS)、具有免疫原性的线粒体DNA (mtDNA)甚至整个线粒体都在一个微妙的平衡中局部动员起来,从而产生炎性作用的热点。当这些过程的正常限制性反馈受到破坏时,有害的自身免疫反应常常就会出现。 免疫系统不正常的一个常见迹象是血液中存在抗线粒体抗体(antimitochondrial antibody, AMA)。比如,在系统性红斑狼疮(SLE)中,可以发现靶向多个线粒体区室的AMA。一些AMA靶向通常在线粒体外膜中发现的蛋白,而另一些AMA靶向mtDNA。由此自然产生的一个问题是鉴于mtDNA在正常情形下位于线粒体基质内部,那么免疫系统如何发现从线粒体中释放出来的mtDNA。 针对这个问题,来自美国国家心肺血液研究所等研究机构的研究人员在一项新的研究中发现释放出来的mtDNA可以导致狼疮。简而言之,当线粒体以多种方式遭受应激时,mtDNA会断裂成碎片,然后与线粒体外膜中的电压依赖性阴离子通道(VDAC)结合。这导致多个VDAC单体聚集在一起并在它们的中间形成一个间孔(meta-pore),mtDNA可以通过该间孔逸出。一旦进入细胞质,各种非特异性传感蛋白,包括针对单链DNA的Toll受体和针对双链DNA的GAS-STING途径,就会触发成熟的I型干扰素(IFN)反应。相关研究结果近期发表在Science期刊上,论文标题为“VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease”。 每个VDAC单体本身都包含一个高度调节的通道,该通道可以根据当前的膜电位让不同大小和电荷的关键分子在任一方向上通过。完全消除VDAC功能在高等真核生物中是行不通的。幸运的是,这些研究人员发现,用寡聚化抑制剂VBIT-4仅阻断其中的一种通道形式--- VDAC1---就可消除导致狼疮样症状的免疫激活。 盘状红斑狼疮(discoid lupus erythematosis)是狼疮的皮肤形式,经常与系统性红斑狼疮相关。作为一种通用治疗策略,仅干扰mtDNA释放可能无法完全清除患者体内的所有AMA。但是,对于狼疮的其他形式(比如狼疮肾炎)而言,这种方法可能更有用,这是因为发现的所有AMA似乎都靶向双链mtDNA。 其他类型的自身免疫性疾病,比如影响肝脏胆管的自身免疫性疾病,也可能与AMA相关。原发性胆汁性胆管炎和原发性硬化性胆管炎是两种以不同形式的自身抗体为特征的疾病。硬化性胆管炎与抗核抗体(ANA)有关。另一方面,胆管性胆管炎患者具有靶向含有丙酮酸脱氢酶复合物E2亚基硫辛酸酯的AMA。此外,这些患者通常还具有靶向与肝脏线粒体相关的亚硫酸氧化酶和糖原磷酸化酶等酶的抗体。 在目前情况下,尚不清楚这些特定类型的抗体是如何和在何处产生的。这种具有免疫原性的E2亚基通常与线粒体DNA一起漂浮在线粒体基质内部,不会习惯性地通过任何通道逸出。据推测,因即将死亡的细胞发生线粒体降解而产生的异常片段可能有助于促进自身抗体的形成。 在试图了解AMA的产生过程中,这些研究人员迄今为止忽略的一个突出问题是mtDNA如何通过线粒体内膜到达外膜VDAC。美国纽约特种外科医院的Peggy Crow指出尽管确切的答案尚不清楚,但是成像研究显示了另一个与VDAC并行作用的孔系统。这些所谓的“BAK/BAX大孔”允许线粒体内膜突出到细胞质中、通透化并转运包括mtDNA在内的基质成分。 这些研究人员迄今为止尚没有较多地谈及线粒体炎症中的活性氧因素。他们的另一项发现已将VDAC1通道的寡聚化和ROS相关联在一起。更具体地说,他们发现一种称为lipoxstatin-1的分子通过降低VDA1的水平和恢复酶GPX4的水平来保护细胞免受活性氧的损害。 GPX4是谷胱甘肽过氧化物酶的一种独特的硒利用形式,可特异性保护细胞膜中的脂质免受氧化损伤。当GPX4受损时,整个细胞中都会发生一种独特的凋亡形式,即铁死亡(ferroptosis)。通过阻止VDAC1而不是VDAC2或VDAC3的寡聚化,他们发现liproxstatin-1可以使铁死亡途径短路。 重要的是,lipoxstatin-1还可以阻断线粒体的收缩、线粒体内嵴的减少和破坏以及导致铁死亡的其他线粒体膜破裂。GPX4缺乏症不是一种自身免疫性疾病,而是一种在极其受限制的细胞群体内发生的以失控的ROS损伤和铁死亡为特征的疾病。这种疾病极为罕见---实际上如此罕见以至于最近刚诊断出的一名患者是世界上唯一患有这种神秘疾病的人。
  • 《Mol Cell | 上海药物所合作揭示5-羟色胺家族部分受体的配体识别和G蛋白选择调控机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-06-20
    • G蛋白偶联受体(GPCRs)是真核生物中最大的一类膜蛋白,在感知胞外信号和介导胞内信息转导中发挥了重要作用,并参与调控多种生理过程,与人类疾病密切相关,是最重要的药物靶标蛋白家族。GPCR与第二信使环磷酸腺苷相关的信号通路中,主要通过刺激型G蛋白(Gs)和抑制型G蛋白(Gi)来区分细胞内不同的信号传递方式。了解受体对Gs和Gi信号通路的选择性机制是GPCR和相关信号转导领域长期以来的重要科学问题。   5-羟色胺(serotonin, 5-HT)是人体中枢神经系统和周围神经系统的主要神经递质之一,其通过结合5-羟色胺受体(5-HTR)发挥调控食欲、记忆、认知,情绪调节和成瘾等重要的生理过程,这也使5-羟色胺受体成为抑郁症、精神分裂症、偏头痛等疾病的重要治疗靶点。5-羟色胺受体家族是GPCR超家族中最复杂的亚家族之一,其包含12种亚型,不同亚型的受体在人体中发挥不同的生理功能,并且与不同种类的G蛋白偶联。其中5-HT4、5-HT6和5-HT7受体主要偶联下游Gs蛋白,5-HT1和5-HT5受体主要偶联下游Gi蛋白。对于在同一内源性配体5-HT激活后,不同亚型的5-羟色胺受体如何偏好地偶联下游G蛋白来调控细胞应答一直困扰着研究人员。   2022年6月16日,中国科学院上海药物研究所徐华强研究员团队,联合浙江大学张岩教授团队以及丹麦哥本哈根大学David E. Gloriam教授团队等,经历一年投稿,在Molecular Cell杂志上在线发表了最新的研究成果“GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors”,取得了5-羟色胺受体结构和功能领域又一突破性进展,成功解析了5-HT4、5-HT6、5-HT7受体与激活型G蛋白(Gs蛋白)和5-HT4受体与抑制型G蛋白(Gi蛋白)结合的复合物三维结构。他们系统性地揭示了小分子配体5-HT和5-CT识别5-羟色胺受体亚型的结构基础,并阐明了5-羟色胺受体选择性偶联Gs蛋白和Gi蛋白的分子机制。  联合团队采用单颗粒冷冻电镜技术分别对5-HT激活5-HT4、5-HT6形成的Gs复合物、5-CT激活5-HT7形成的Gs复合物和5-HT激活5-HT4形成的Gi复合物进行了结构重塑,最终解析了4个在配体激活状态下与不同蛋白的复合物结构,其中5-HT-5-HT4-Gs复合物结构的分辨率为3.1埃,5-HT-5-HT6-Gs复合物结构的分辨率为3.3埃,5-CT-5-HT7-Gs复合物结构的分辨率为3.2埃,5-HT-5-HT4-Gi复合物结构的分辨率为3.2埃(图1)。  该团队将所获的这三种Gs偶联的5-羟色胺受体与Gi偶联的5-羟色胺受体进行了结构比较,并进一步与另外已发表的19种Gs和Gi偶联的A类GPCRs结构进行比较。他们发现,跨膜螺旋TM5和TM6长度作为“macro-switch”来分别确定受体对Gs和Gi的选择性,且这种TM5-TM6 长度的“macro-switch”由A类GPCRs-G蛋白结构共享。此外,TM5和TM6中的特定残基充当“micro-switches”以与Gs或Gi形成特定的相互作用。这些结果展示了A类GPCRs的 Gs和Gi蛋白偶联选择性或混杂的共同机制(图2)。   为探究G蛋白偏好5-羟色胺受体的假设,该团队进行了两组实验来检验TM5和TM6的长度是GPCR区分Gs和Gi蛋白的关键因素的假设。第一组实验是将5-HT1A受体的TM6末端螺旋断裂并且TM5螺旋延伸或5-HT4、5-HT7受体的TM5末端螺旋断裂并且TM6螺旋延伸,功能结果表明这种改造影响了5-HT4、5-HT7受体偶联Gs蛋白的能力,然后将5-HT1A受体由原来Gi偶联转变成了Gs偶联,这些结果支持TM5和TM6长度的“macro-switch”是G蛋白选择性的关键。第二组实验是将Gi偶联的5-HT1A的TM5-TM6区域与Gs偶联的5-HT4和5-HT7受体的TM5-TM6区域互换。研究结果表明,嵌合受体5-HT1A (5-HT4_P5.50-P6.50)与野生型5-HT4具有相似的功能,即具有高组成型激活且几乎不受配体调节。同样,5-HT1A (5-HT7_P5.50-P6.50)显示出与野生型5-HT7相似的功能,在激动剂诱导下进行的cAMP 积累。如果将5-HT4和5-HT7的ICL3替换为5-HT1A,在激动剂诱导下进行的cAMP积累的能力几乎丧失,类似于野生型5-HT1A受体。综上所述,该团队以5-羟色胺家族受体为切入点揭示了A类GPCRs的Gs、Gi蛋白偶联选择性机制,并扩展了5-羟色胺受体的配体识别基础。   徐华强团队长期致力于5-羟色胺家族受体的结构与功能研究,并取得了一系列系统性的重要成果。2013年,该团队于在Science上首次报导了激动剂结合的5-HT1B受体的高分辨率晶体结构1。2018年,该团队在Cell Discovery发表了首个反向激动剂结合的5-HT1B受体的晶体结构2。2021年3月,该团队在Nature上首次报道了5-HT1A、5-HT1D、5-HT1E受体的结构,并揭示了磷脂PI4P(PtdIns4P)和胆固醇调节受体功能的机制和受体的本底激活机制3。2021年7月,该团队在Cell Research上首次报道了5-HT1F受体的结构,并揭示了偏头痛药物拉米替坦对该受体的选择性结合机制4。2022年5月,该团队在Cell Discovery上首次报道了5-HT5A受体的结构5。   在前期研究基础上,该成果不仅揭示了A类GPCR选择性偶联G蛋白的分子机制,还填补了5-HT家族受体结构解析的最后空白。该成果首次报道5-HT4、5-HT6、5-HT7受体结构,使所有12种5-HT受体亚型的结构均得到了解析。这些在5-羟色胺受体上系统性的研究极大地丰富我们对5-羟色胺系统的结构与功能认识,并为开发治疗抑郁症、精神分裂症、偏头痛等疾病的药物提供了重要基础。   本课题由徐华强研究员领衔,联合浙江大学张岩教授和丹麦哥本哈根大学的David E. Gloriam教授团队等,精诚合作,全力攻关,并在中国科学院上海药物研究所蒋轶研究员和余学奎研究员的协助下完成。上海药物研究所黄思婕博士和徐沛雨博士、浙江大学基础医学院研究助理沈丹丹和丹麦哥本哈根大学的Icaro A. Simon为本文共同第一作者。 参考文献: 1.Wang, C. et al. Structural basis for molecular recognition at serotonin receptors. Science 340, 610-614 (2013). 2.Yin, W. et al. Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist. Cell discovery 4, 1-13 (2018). 3.Xu, P. et al. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 592, 469-473 (2021). 4.Huang, S. et al. Structural basis for recognition of anti-migraine drug lasmiditan by the serotonin receptor 5-HT1F–G protein complex. Cell Research 31, 1036-1038 (2021). 5.Tan, Y. et al. Structural insights into the ligand binding and Gi coupling of serotonin receptor 5-HT5A. Cell discovery 8, 1-9 (2022). 文章链接:https://www.sciencedirect.com/science/article/pii/S1097276522005299?dgcid=coauthor