《欧洲南方天文台下一代凌星仪器发现第一颗系外行星》

  • 来源专题:天文仪器与技术信息
  • 编译者: zwg@niaot.ac.cn
  • 发布时间:2017-11-02
  • The Next Generation Transit Survey (NGTS) instrument at ESO’s Paranal Observatory in northern Chile has found its first exoplanet, a hot Jupiter orbiting an M-dwarf star [1] now named NGTS-1. The planet, NGTS-1b, is only the third gas giant to have been observed transiting an M-dwarf star, following Kepler-45b and HATS-6b. NGTS-1b is the largest and most massive of these three, with a radius of 130% and a mass of 80% those of Jupiter.

    The NGTS uses an array of twelve 20-centimetre telescopes to search for the tiny dips in the brightness of a star caused when a planet in orbit around it passes in front of it (“transits”) and blocks some of its light. Once NGTS-1b had been discovered its existence was confirmed by follow-up observations at ESO’s La Silla Observatory: photometric observations with EulerCam on the 1.2-metre Swiss Leonhard Euler Telescope; and spectroscopic investigations with the HARPS instrument on ESO’s 3.6-metre telescope.

    Small planets are relatively common around M-dwarf stars, whereas gas giants like NGTS-1b appear to be rarer around M-dwarfs than they are around stars more like the Sun. This is consistent with current theories of planet formation, but observations of more M-dwarfs are needed before a clear understanding of the numbers of giant planets around them can be arrived at. The NGTS is specifically designed to provide better data on planets around M-dwarf stars, and since they account for around 75% of stars in the Milky Way, studying them will help astronomers to understand the majority population of planets in the Galaxy.

    The future could be very exciting for this exoplanet system as it has the potential to be studied in greater detail by the suite of instruments on board the NASA/ESA/CSA James Webb Space Telescope (JWST) which is due to be launched in 2019.

    Notes

    [1] An M-dwarf is a small, faint star with approximately 8–50% of the mass of the Sun and with a surface temperature of less than 3700°C. 50 of the closest 60 stars to our Solar System are thought to be M-dwarfs, even though not a single one is bright enough to be visible from the Earth with the naked eye.

  • 原文来源:http://www.eso.org/public/announcements/ann17076/
相关报告
  • 《欧洲南方天文台8.2米望远镜系外行星成像器SPHERE见证系外行星诞生》

    • 来源专题:天文仪器与技术信息
    • 编译者:zwg@niaot.ac.cn
    • 发布时间:2018-07-06
    • SPHERE, a planet-hunting instrument on ESO’s Very Large Telescope, has captured the first confirmed image of a planet caught in the act of forming in the dusty disc surrounding a young star. The young planet is carving a path through the primordial disc of gas and dust around the very young star PDS 70. The data suggest that the planet’s atmosphere is cloudy. Astronomers led by a group at the Max Planck Institute for Astronomy in Heidelberg, Germany have captured a spectacular snapshot of planetary formation around the young dwarf star PDS 70. By using the SPHERE instrument on ESO’s Very Large Telescope (VLT) — one of the most powerful planet-hunting instruments in existence — the international team has made the first robust detection of a young planet, named PDS 70b, cleaving a path through the planet-forming material surrounding the young star [1]. The SPHERE instrument also enabled the team to measure the brightness of the planet at different wavelengths, which allowed properties of its atmosphere to be deduced. The planet stands out very clearly in the new observations, visible as a bright point to the right of the blackened centre of the image. It is located roughly three billion kilometres from the central star, roughly equivalent to the distance between Uranus and the Sun. The analysis shows that PDS 70b is a giant gas planet with a mass a few times that of Jupiter. The planet's surface has a temperature of around 1000°C, making it much hotter than any planet in our own Solar System. The dark region at the centre of the image is due to a coronagraph, a mask which blocks the blinding light of the central star and allows astronomers to detect its much fainter disc and planetary companion. Without this mask, the faint light from the planet would be utterly overwhelmed by the intense brightness of PDS 70. “These discs around young stars are the birthplaces of planets, but so far only a handful of observations have detected hints of baby planets in them,” explains Miriam Keppler, who lead the team behind the discovery of PDS 70’s still-forming planet. “The problem is that until now, most of these planet candidates could just have been features in the disc.” The discovery of PDS 70’s young companion is an exciting scientific result that has already merited further investigation. A second team, involving many of the same astronomers as the discovery team, including Keppler, has in the past months followed up the initial observations to investigate PDS 70’s fledgling planetary companion in more detail. They not only made the spectacularly clear image of the planet shown here, but were even able to obtain a spectrum of the planet. Analysis of this spectrum indicated that its atmosphere is cloudy. PDS 70’s planetary companion has sculpted a transition disc — a protoplanetary disc with a giant “hole” in the centre. These inner gaps have been known about for decades and it has been speculated that they were produced by disc-planet interaction. Now we can see the planet for the first time. “Keppler’s results give us a new window onto the complex and poorly-understood early stages of planetary evolution,” comments André Müller, leader of the second team to investigate the young planet. “We needed to observe a planet in a young star’s disc to really understand the processes behind planet formation.” By determining the planet’s atmospheric and physical properties, the astronomers are able to test theoretical models of planet formation. This glimpse of the dust-shrouded birth of a planet was only possible thanks to the impressive technological capabilities of ESO’s SPHERE instrument, which studies exoplanets and discs around nearby stars using a technique known as high-contrast imaging — a challenging feat. Even when blocking the light from a star with a coronagraph, SPHERE still has to use cleverly devised observing strategies and data processing techniques to filter out the signal of the faint planetary companions around bright young stars [2] at multiple wavelengths and epochs. Thomas Henning, director at the Max Planck Institute for Astronomy and leader of the teams, summarises the scientific adventure: “After more than a decade of enormous efforts to build this high-tech machine, now SPHERE enables us to reap the harvest with the discovery of baby planets!” Notes [1] The disc and planet images and the planet’s spectrum have been captured in the course of the two survey programmes called SHINE (SpHere INfrared survey for Exoplanets) and DISK (sphere survey for circumstellar DISK). SHINE aims to image 600 young nearby stars in the near-infrared using SPHERE’s high contrast and high angular resolution to discover and characterise new exoplanets and planetary systems. DISK explores known, young planetary systems and their circumstellar discs to study the initial conditions of planetary formation and the evolution of planetary architectures. [2] In order to tease out the weak signal of the planet next to the bright star, astronomers use a sophisticated method that benefits from the Earth's rotation. In this observing mode, SPHERE continuously takes images of the star over a period of several hours, while keeping the instrument as stable as possible. As a consequence, the planet appears to slowly rotate, changing its location on the image with respect to the stellar halo. Using elaborate numerical algorithms, the individual images are then combined in such a way that all parts of the image that appear not to move during the observation, such as the signal from the star itself, are filtered. This leaves only those that do apparently move — making the planet visible.
  • 《天体物理学家发现了许多有系外行星的多星系》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-11-15
    • 地球是宇宙中唯一适合人类居住的星球吗?还是在其他地方有更多的星球能够支持生命的存在?如果有,它们会是什么样子?为了回答这些基本问题,科学家们正在太空中寻找系外行星:即围绕太阳系外其他恒星运行的遥远星球。 迄今为止,已知的系外行星有4000多颗,其中大多数围绕着像我们的太阳这样的单星运行。现在,德国耶拿市弗里德里希·席勒大学的天体物理学家Markus Mugrauer博士已经发现并描述了许多包含系外行星的新的多重恒星系统。这些发现证实了几个恒星的存在会影响行星形成和发展的假设。这项由耶拿大学天文物理研究所和大学天文台的Mugrauer进行的研究已经发表在专业期刊《皇家天文学会月刊》上。 太空望远镜提供精确的数据 Mugrauer解释说:“多重星系在我们的银河系中非常常见。”“如果这样的系统包括行星,它们会引起天体物理学家的特别兴趣,因为其中的行星系统可能与我们的太阳系在根本上有所不同。”为了找到更多关于这些差异的信息,Mugrauer搜索了1300多颗有系外行星环绕的系外主恒星,看看它们是否有伴星。为此,他访问了由欧洲航天局(ESA)操作的盖亚空间望远镜的精确观测数据。 通过这种方式,他成功地证明了大约200颗伴星和距离太阳1600光年的行星主恒星的存在。在这些数据的帮助下,Mugrauer还能够更详细地描述伴星及其系统。他发现,既存在距离只有20天文单位(au)的紧密系统——在我们的太阳系中,这个距离大约相当于太阳和天王星之间的距离——也存在距离超过9000 au的恒星系统。 红白矮星 伴星的质量、温度和演化阶段也各不相同。其中最重的重量是太阳的1.4倍,而最轻的只有太阳质量的8%。大多数伴星都是低质量的冷矮星,发出微弱的红色光芒。然而,在微弱的恒星伴星中也发现了八颗白矮星。白矮星是一颗像太阳一样的恒星的燃尽核心,它只有地球那么大,但有太阳一半重。这些观察表明,系外行星确实可以在附近类太阳恒星的最后进化阶段幸存下来。 有系外行星的双星、三星和四星系统 研究中发现的大多数系外行星星系都有两颗恒星。然而,发现了大约24个分级的三星系统,甚至一个四星系统。在研究的距离范围内,在大约20至10 000个天文单位之间,总共有15%的研究恒星至少有一颗伴星。这只是一般类太阳恒星预期频率的一半。此外,探测到的伴星的距离大约是普通星系的5倍。 Mugrauer说:“这两个因素加在一起可能表明,一个恒星系统中几颗恒星的影响会破坏行星的形成过程以及它们轨道的进一步发展。”造成这一现象的原因可能首先是伴星对气体和尘埃盘的引力影响,行星是在这些气体和尘埃盘中围绕它们的主恒星形成的。后来,伴星的引力影响了行星围绕其主恒星的运动。 Markus Mugrauer希望进一步推进这个项目。在未来,新发现的行星主恒星的多样性也将利用来自盖亚任务的数据进行研究,任何探测到的伴星都将得到精确的特征描述。Mugrauer补充说:“此外,我们将把这些结果与国际观测活动的结果结合起来,我们目前正在智利的欧洲南方天文台的帕拉纳尔天文台就同一主题开展国际观测活动。”“我们将能够研究恒星多样性对行星形成和发展的精确影响。” ——文章发布于2019年11月13日